Skip to main content

Whole-Body Motion Synthesis with LQP-Based Controller – Application to iCub

  • Chapter

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 18))

Abstract

This paper deals with the dynamic control of humanoid robots interacting with their environment, and more specifically the behavioral synthesis for dynamic tasks. The particular problem that is considered here is the sequencing of elementary activities subjected to physical constraints, both internal as torque limits and external as contacts, within the framework of posture/tasks coordination. For that we propose to convert the set of tasks into weighted quadratic functions and to minimize their cost with a Linear Quadratic Program. The combination of elementary tasks leads to complex actions, and the continuous evolution of the weights ensures smooth transitions over time, as it is shown in the results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y., da Silva, M., Popovic, J.: Multiobjective Control with Frictional Contacts. In: Symposium on Computer Animation (SCA) (2007)

    Google Scholar 

  2. Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Visual Computer 20(6), 402–417 (2004)

    Article  Google Scholar 

  3. Barthélemy, S., Salini, J., Micaelli, A.: Arboris-python, https://github.com/salini/arboris-pyhton

  4. Collette, C., Micaelli, A., Andriot, C., Lemerle, P.: Dynamic Balance Control of Humanoids for Multiple Grasps and non Coplanar Frictional Contacts. In: Humanoids 2007 (2007)

    Google Scholar 

  5. Dahl, J., Vandenberghe, L.: Cvxopt - python software for convex optimization, http://abel.ee.ucla.edu/cvxopt/

  6. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation Taipei, Taiwan (2003)

    Google Scholar 

  7. Kanoun, O.: Contribution à la planification de mouvement pour robots humanoïdes. Ph.D. thesis, Université Toulouse III (2009)

    Google Scholar 

  8. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition. In: Permis: Performance Metrics for Intelligent Systems Workshop, Washington DC, USA (2008)

    Google Scholar 

  9. Padois, V.: Enchaînements dynamiques de tâches pour des manipulateurs mobiles à roues. Ph.D. thesis, Institut National Polytechnique, Toulouse, France (2005)

    Google Scholar 

  10. Park, J.: Control strategies for robots in contact. Ph.D. thesis, Stanford University (2006)

    Google Scholar 

  11. Sentis, L.: Synthesis and control of whole-body behaviors in humanoid systems. Ph.D. thesis, Stanford University (2007)

    Google Scholar 

  12. Siciliano, B., Slotine, J.-J.: A general framework for managing multiple tasks in highly redundant robotic systems. In: ICAR 1991, vol. 2, pp. 1211–1215 (1991)

    Google Scholar 

  13. da Silva, M., Abe, Y., Popovic, J.: Simulation of human motion data using short-horizon model-predictive control. In: Eurographics (2008)

    Google Scholar 

  14. Wieber, P.B.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: IEEE-RAS International Conference on Humanoid Robots, Genova, Italy (2006)

    Google Scholar 

  15. Sardain, P., Bessonnet, G.: Forces Acting on a Biped Robot. Center of Pressure - Zero Moment Point. IEEE Transactions on Systems, Man, and Cybernetics, Part A 34(5), 630–637 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Salini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salini, J., Barthélemy, S., Bidaud, P., Padois, V. (2013). Whole-Body Motion Synthesis with LQP-Based Controller – Application to iCub. In: Mombaur, K., Berns, K. (eds) Modeling, Simulation and Optimization of Bipedal Walking. Cognitive Systems Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36368-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36368-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36367-2

  • Online ISBN: 978-3-642-36368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics