Advertisement

Shorter IBE and Signatures via Asymmetric Pairings

  • Jie Chen
  • Hoon Wei Lim
  • San Ling
  • Huaxiong Wang
  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7708)

Abstract

We present efficient Identity-Based Encryption (IBE) and signature schemes under the Symmetric External Diffie-Hellman (SXDH) assumption in bilinear groups. In both the IBE and the signature schemes, all parameters have constant numbers of group elements, and are shorter than those of previous constructions based on Decisional Linear (DLIN) assumption. Our constructions use both dual system encryption (Waters, Crypto ’09) and dual pairing vector spaces (Okamoto and Takashima, Pairing ’08, Asiacrypt ’09). Specifically, we show how to adapt the recent DLIN-based instantiations of Lewko (Eurocrypt ’12) to the SXDH assumption. To our knowledge, this is the first work to instantiate either dual system encryption or dual pairing vector spaces under the SXDH assumption.

Keywords

Signature Scheme Random Oracle Challenge Ciphertext Bilinear Group Asymmetric Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. J. Cryptology 21(3), 350–391 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Kirsch, J., Blanton, M.: Secret handshakes with dynamic and fuzzy matching. In: NDSS (2007)Google Scholar
  4. 4.
    Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via keyword-searchable encryption. IACR Cryptology ePrint Archive, Report 2005/417 (2005)Google Scholar
  5. 5.
    Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management—part 1: General (revised). NIST Special Pub., 800-57 (2007)Google Scholar
  6. 6.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 501–510 (2010)Google Scholar
  13. 13.
    Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptography 37(1), 133–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: IMA Int. Conf., pp. 360–363 (2001)Google Scholar
  17. 17.
    Ducas, L.: Anonymity from Asymmetry: New Constructions for Anonymous HIBE. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptology 23(2), 224–280 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Freeman, D.M.: Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Galbraith, S.D., Rotger, V.: Easy decision Diffie-Hellman groups. IACR Cryptology ePrint Archive, Report 2004/070 (2004)Google Scholar
  21. 21.
    Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  23. 23.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Lewko, A.: Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of Elliptic Curve Traces under FR-Reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vector Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-Products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. Cryptology ePrint Archive, Report 2010/563 (2010)Google Scholar
  33. 33.
    Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual-system primitives using asymmetric pairings. IACR Cryptology ePrint Archive, Report 2012/024 (2012)Google Scholar
  34. 34.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  35. 35.
    Verheul, E.R.: Evidence that XTR is more secure than Supersingular Elliptic Curve cryptosystems. Journal of Cryptology 17(4), 277–296 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jie Chen
    • 1
  • Hoon Wei Lim
    • 1
  • San Ling
    • 1
  • Huaxiong Wang
    • 1
  • Hoeteck Wee
    • 2
    • 1
  1. 1.Division of Mathematical Sciences, School of Physical & Mathematical SciencesNanyang Technological UniversitySingapore
  2. 2.Department of Computer ScienceGeorge Washington UniversityUSA

Personalised recommendations