Controlled Joining on Encrypted Relational Database

  • Jun Furukawa
  • Toshiyuki Isshiki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7708)


If a user encrypts data, stores them in a relational database (RDB), and keeps the key for both encryption and decryption by himself, then the risk of leaking data from the RDB directly can be mitigated. Such a strategy can be considered as a natural solution for preventing data leakage when the manager of the database cannot be entirely trusted or the burden of managing the database needs to be lightened. However, if the database cannot access to this key, it can execute only a few relational algebraic operations by itself, which spoils the serviceability of the database.

This paper first introduces the notion of an encryption for controlled joining (ECJ), which enables RDB to execute “natural join” of tables when and only when its user required it. This technique can directly be applied for union, difference, and intersection of tables also. Then, the paper proposes an instance under a novel but natural assumption on asymmetric bilinear group. Combining an ECJ with a searchable encryption and an order-preserving encryption, one can construct an encrypted database which can executes the major part of relational algebraic operations. The proposed instance is efficient in a reasonable extent and sacrifices its security only in a minimum extent. We consider such a technique can bring an enhanced security into the database-as-service environment.


encrypted RDB natural join union difference intersection asymmetric bilinear group non-transitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for secure database services. In: CIDR, pp. 186–199 (2005)Google Scholar
  2. 2.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for numeric data. In: Weikum, G., König, A.C., Deßloch, S. (eds.) SIGMOD Conference, pp. 563–574. ACM (2004)Google Scholar
  3. 3.
    Amanatidis, G., Boldyreva, A., O’Neill, A.: Provably-Secure Schemes for Basic Query Support in Outsourced Databases. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 14–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS. The Internet Society (2005)Google Scholar
  5. 5.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Beuchat, J.-L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Blaze, M., Bleumer, G., Strauss, M.J.: Divertible Protocols and Atomic Proxy Cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-Preserving Symmetric Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-Checkable Encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–348. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ceselli, A., Damiani, E., di Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Modeling and assessing inference exposure in encrypted databases. ACM Trans. Inf. Syst. Secur. 8(1), 119–152 (2005)CrossRefGoogle Scholar
  16. 16.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS, pp. 41–50 (1995)Google Scholar
  17. 17.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Ciriani, V., di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Combining fragmentation and encryption to protect privacy in data storage. ACM Trans. Inf. Syst. Secur. 13(3) (2010)Google Scholar
  20. 20.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)zbMATHCrossRefGoogle Scholar
  21. 21.
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp. 79–88. ACM (2006)Google Scholar
  22. 22.
    di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Controlled information sharing in collaborative distributed query processing. In: ICDCS, pp. 303–310. IEEE Computer Society (2008)Google Scholar
  23. 23.
    Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
  24. 24.
    Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing sql over encrypted data in the database-service-provider model. In: Franklin, M.J., Moon, B., Ailamaki, A. (eds.) SIGMOD Conference, pp. 216–227. ACM (2002)Google Scholar
  25. 25.
    Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE, p. 29. IEEE Computer Society (2002)Google Scholar
  26. 26.
    Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 720–731. Morgan Kaufmann (2004)Google Scholar
  27. 27.
    Jakobsson, M.: On Quorum Controlled Asymmetric Proxy Re-encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)Google Scholar
  29. 29.
    Microsoft. Deploying sql server 2008 based on payment card industry data security standards (2008),
  30. 30.
    Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of Elliptic Curve Traces under FR-Reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  31. 31.
  32. 32.
    PCI-DSS. Payment card industry (pci) data security standard version 2.0,
  33. 33.
    Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting confidentiality with encrypted query processing. In: Wobber, T., Druschel, P. (eds.) SOSP, pp. 85–100. ACM (2011)Google Scholar
  34. 34.
    Samarati, P.: Protecting data privacy in outsourcing scenarios: invited talk. In: Daniel, F., Delcambre, L.M.L., Fotouhi, F., Garrigós, I., Guerrini, G., Mazón, J.-N., Mesiti, M., Müller-Feuerstein, S., Trujillo, J., Truta, T.M., Volz, B., Waller, E., Xiong, L., Zimányi, E. (eds.) EDBT/ICDT Workshops. ACM International Conference Proceeding Series. ACM (2010)Google Scholar
  35. 35.
    Samarati, P., di Vimercati, S.D.C.: Data protection in outsourcing scenarios: issues and directions. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS, pp. 1–14. ACM (2010)Google Scholar
  36. 36.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint report 2004/332 (November 30, 2004)Google Scholar
  37. 37.
    Tang, Q.: Towards Public Key Encryption Scheme Supporting Equality Test with Fine-Grained Authorization. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 389–406. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic Public Key Encryption with Equality Test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jun Furukawa
    • 1
  • Toshiyuki Isshiki
    • 1
  1. 1.NEC CorporationJapan

Personalised recommendations