Advertisement

Implementing Pairings at the 192-Bit Security Level

  • Diego F. Aranha
  • Laura Fuentes-Castañeda
  • Edward Knapp
  • Alfred Menezes
  • Francisco Rodríguez-Henríquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7708)

Abstract

We implement asymmetric pairings derived from Kachisa-Schaefer-Scott (KSS), Barreto-Naehrig (BN), and Barreto-Lynn-Scott (BLS) elliptic curves at the 192-bit security level. Somewhat surprisingly, we find pairings derived from BLS curves with embedding degree 12 to be the fastest for our serial as well as our parallel implementations. Our serial implementations provide a factor-3 speedup over the previous state-of-the-art, demonstrating that pairing computation at the 192-bit security level is not as expensive as previously thought. We also present a general framework for deriving a Weil-type pairing that is well-suited for computing a single pairing on a multi-processor machine.

Keywords

Elliptic Curf Security Level Line Evaluation High Security Level Weil Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography, http://code.google.com/p/relic-toolkit/
  2. 2.
    Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Aranha, D.F., Knapp, E., Menezes, A., Rodríguez-Henríquez, F.: Parallelizing the Weil and Tate Pairings. In: Chen, L. (ed.) Cryptography and Coding 2011. LNCS, vol. 7089, pp. 275–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Aranha, D.F., López, J., Hankerson, D.: High-Speed Parallel Software Implementation of the η T Pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 89–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing Elliptic Curves with Prescribed Embedding Degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Designs, Codes and Cryptography 37, 133–141 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Costello, C., Lauter, K., Naehrig, M.: Attractive Subfamilies of BLS Curves for Implementing High-Security Pairings. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology 23, 224–280 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fuentes-Castañeda, L., Knapp, E., Rodríguez-Henríquez, F.: Faster Hashing to \({\mathbb G}_2\). In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Applied Mathematics 156, 3113–3121 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate Pairing on Hyperelliptic Curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 430–447. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Hess, F.: Pairing Lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Karabina, K.: Squaring in cyclotomic subgroups. Mathematics of Computation (to appear)Google Scholar
  19. 19.
    Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Lauter, K., Montgomery, P.L., Naehrig, M.: An Analysis of Affine Coordinates for Pairing Computation. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 1–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Miller, V.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17, 235–261 (2004)zbMATHCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Pereira, G., Simplício Jr., M., Naehrig, M., Barreto, P.: A family of implementation-friendly BN elliptic curves. Journal of Systems and Software 84, 1319–1326 (2011)CrossRefGoogle Scholar
  25. 25.
    Pollard, J.: Monte Carlo methods for index computation mod p. Mathematics of Computation 32, 918–924 (1978)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Schirokauer, O.: Discrete logarithms and local units. Philosophical Transactions of the Royal Society London A 345, 409–423 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Scott, M.: Computing the Tate Pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Scott, M.: On the Efficient Implementation of Pairing-Based Protocols. In: Chen, L. (ed.) Cryptography and Coding 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56, 455–461 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Diego F. Aranha
    • 1
  • Laura Fuentes-Castañeda
    • 2
  • Edward Knapp
    • 3
  • Alfred Menezes
    • 3
  • Francisco Rodríguez-Henríquez
    • 2
  1. 1.Department of Computer ScienceUniversity of BrasíliaBrazil
  2. 2.Computer Science DepartmentCINVESTAV-IPNMexico
  3. 3.Department of Combinatorics & OptimizationUniversity of WaterlooCanada

Personalised recommendations