Skip to main content

Self-Healing Circuits Using Statistical Element Selection

  • Chapter
Analog/RF and Mixed-Signal Circuit Systematic Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 233))

  • 4096 Accesses

Abstract

Due to the ongoing aggressive scaling of integrated circuit technologies, designers are challenged by creating robust analog and mixed-signal circuit designs. The increasing random intra-die variations of small feature sizes in advanced CMOS nodes severely limit the benefits of scaling for analog/mixed-signal circuits with the diminishing voltage headroom. This chapter describes the details of the statistical element selection (SES) methodology that relies on the combinatorial growth in number of subsets. With selectable circuit elements, the randomness can be used to provide post-manufacturing configuration to achieve specifications. The calibration methodology is demonstrated with two silicon results in 65nm CMOS technology. One test chip consists of an array of digitally calibrated comparators with built-in combinatorial redundancy. Over 99.5% of the comparators reach the given offset requirement compared to 15% for Pelgrom-type sizing. The other test chip is an 8-bit, 1.5GS/s flash ADC. The prototype achieves 37dB of SNDR with 1.3GHz ERBW for 35mW power consumption and 0.42pJ/conv-step of figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelgrom, M.J.M., Duinmaijer, A.C.J., Welbers, A.P.G.: Matching Properties of MOS Transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  2. Flynn, M.P., Donovan, C., Sattler, L.: Digital Calibration Incorporating Redundancy of Flash ADCs. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(5), 205–213 (2003)

    Article  Google Scholar 

  3. Li, X., Taylor, B., Chien, Y., Pileggi, L.T.: Adaptive Post-Silicon Tuning for Analog Circuits: Concept, Analysis and Optimization. In: IEEE/ACM Int. Conf. on Computer-Aided Design Dig. Tech. Papers, pp. 450–457 (November 2007)

    Google Scholar 

  4. Agarwal, K., Nassif, S.: Characterizing process variation in nanometer CMOS. In: Proc. ACM/IEEE Design Automation Conf., pp. 396–399 (June 2007)

    Google Scholar 

  5. Scott, G., et al.: NMOS drive current reduction caused by transistor layout and trench isolation induced stress. In: IEEE Int. Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 827–830 (December 1999)

    Google Scholar 

  6. Fukutome, H., et al.: Carrier profile designing to suppress systematic variation related with device layout by controlling STI-enhanced dopant diffusions correlated with point defects. In: IEEE Int. Electron Devices Meeting (IEDM) Dig., pp. 53–56 (December 2009)

    Google Scholar 

  7. Gupta, P., Heng, F.-L.: Toward a systematic-variation aware timing methodology. In: ACM/IEEE Design Automation Conf. Dig. Tech. Papers, pp. 321–326 (June 2004)

    Google Scholar 

  8. Webb, C.: 45 nm design for manufacturing. Intel Technology J. 12, 121–130 (2008)

    Google Scholar 

  9. Jhaveri, T., et al.: Co-optimization of circuits, layout and lithography for predictive technology scaling beyond gratings. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 29(4), 509–527 (2010)

    Article  Google Scholar 

  10. Watt, J.T., Plummer, J.D.: Dispersion of MOS capacitance-voltage characteristics resulting from the random channel dopant ion distribution. IEEE Trans. Electron Devices 41(11), 2222–2232 (1994)

    Article  Google Scholar 

  11. Sugii, N., et al.: Local variability and scalability in silicon-on-thin-BOX (SOTB) CMOS with small random-dopant fluctuation. IEEE Trans. Electron Devices 57(4), 835–845 (2010)

    Article  Google Scholar 

  12. Matsukawa, T., et al.: Comprehensive analysis of variability sources of FinFET characteristics. In: IEEE Symp. VLSI Technology Dig., pp. 118–119 (June 2009)

    Google Scholar 

  13. Chiang, M.-H., Lin, J.-N., Kim, K., Chuang, C.-T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)

    Article  Google Scholar 

  14. Li, Y., Hwang, C.-H., Li, T.-Y., Han, M.-H.: Process-variation effect, metal-gate work-function fluctuation, and random-dopant fluctuation in emerging CMOS technologies. IEEE Trans. Electron Devices 57(2), 437–447 (2010)

    Article  Google Scholar 

  15. Cheng, K., et al.: Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications. In: IEEE Int. Electron Devices Meeting (IEDM) Dig., pp. 49–52 (December 2009)

    Google Scholar 

  16. Ellersick, W., Yang, C.-K., Horowitz, M., Dally, W.: GAD: A 12-GS/s CMOS 4-bit A/D converter for an equalized multi-level link. In: Symp. VLSI Circuits Dig. Tech. Papers, pp. 49–52 (1999)

    Google Scholar 

  17. Kinget, P.R.: Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circuits 40(6), 1212–1224 (2005)

    Article  Google Scholar 

  18. Keskin, G., Proesel, J., Pileggi, L.: Statistical modeling and post manufacturing configuration for scaled analog CMOS. In: Proc. IEEE Custom Integrated Circuits Conf., pp. 1–4 (September 2010)

    Google Scholar 

  19. Chen, C.-Y., Le, M.Q., Kim, K.Y.: A low power 6-bit flash ADC with reference voltage and common-mode calibration. IEEE J. Solid- State Circuits 44(4), 1041–1046 (2009)

    Article  Google Scholar 

  20. Proesel, J., Keskin, G., Plouchart, J.-O., Pileggi, L.: An 8-bit 1.5 GS/s flash ADC using post-manufacturing statistical selection. In: Proc. IEEE Custom Integrated Circuits Conf., pp. 1–4 (September 2010)

    Google Scholar 

  21. Abo, A., Gray, P.: A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34(5), 599–606 (1999)

    Article  Google Scholar 

  22. Verbruggen, B., et al.: A 2.2 mW 1.75 GS/s 5 bit folding flash ADC in 90 nm digital CMOS. IEEE J. Solid-State Circuits 44(3), 874–882 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa H. -C. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, V.H.C., Keskin, G., Pileggi, L.T. (2013). Self-Healing Circuits Using Statistical Element Selection. In: Fakhfakh, M., Tlelo-Cuautle, E., Castro-Lopez, R. (eds) Analog/RF and Mixed-Signal Circuit Systematic Design. Lecture Notes in Electrical Engineering, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36329-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36329-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36328-3

  • Online ISBN: 978-3-642-36329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics