Skip to main content

MIDAS: Microwave Inductor Design Automation on Silicon

  • Chapter
Analog/RF and Mixed-Signal Circuit Systematic Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 233))

  • 4105 Accesses

Abstract

The design of modern radiofrequency integrated circuits on silicon operating at microwave and millimeter-waves requires the integration of several spiral inductors, transformers and transmission lines, which are commonly not available in the process design-kits of the technologies. Moreover, the design and simulation of such devices are not addressed adequately by means of systematic techniques and automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zito, D.: On exploiting new circuit topologies for the next-generation wireless transceivers at the μ- and mm-waves. In: IEEE Int. Conf. NEWCAS-TAISA, pp. 380–383 (2008)

    Google Scholar 

  2. Alimenti, F., Stopponi, G., et al.: Numerical FDTD Modeling of Silicon Integrated Spiral Inductors. Microw. J. 46(8), 68–87 (2003)

    Google Scholar 

  3. Niknejad, A.M., Meyer, R.G.: Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE J. of Solid-State Circuits 33(10), 1470–1481 (1998)

    Article  Google Scholar 

  4. Dickson, T.O., La Croix, M.A.: 30-100GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Trans. on Microw. Theory and Tech. 53(1) (2005)

    Google Scholar 

  5. Kraemer, M., Dragomirescu, D., Plana, L.: Accurate electromagnetic simulation and measurement of millimeter-wave inductors in bulk CMOS technology. Top. Meet. on Silicon Monolithic Integr. Circuits in RF Syst. (SiRF) (2010)

    Google Scholar 

  6. http://www.helic.com/velocerf (accessed July 19, 201)

  7. Koutsoyannopoulos, Y.K., Papananos, Y.: Systematic analysis and modeling of integrated inductors and transformers in RF IC design. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing 47(8), s:699–s:713 (2000)

    Google Scholar 

  8. De Ranter, C.R.C., Van der Plas, G., Steyaert, M.S.J., Gielen, G.G.E., Sansen, W.M.C.: CYCLONE: automated design and layout of RF LC-oscillators. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 21(10), 1161–1170 (2002)

    Article  Google Scholar 

  9. http://www.midas-project.org (accessed July 17, 2012)

  10. http://www.cadence.com (accessed July 17, 2012)

  11. http://bwrc.eecs.berkeley.edu/classes/icbook/spice (accessed July 17, 2012 )

  12. http://www.mentor.com (accessed July 17, 2012)

  13. http://www.synopsys.com (accessed July 17, 2012)

  14. Cheng, Q.S., Bandler, J.W., et al.: The State of the Art of Microwave CAD: EM-Based Optimization and Modeling. Int. J. of RF and Microw. Computer-Aided Eng. 20(5) (2010)

    Google Scholar 

  15. Radonic, V., Crnojevic-Bengin, V., Zivanov, L.: Comparison of Commercially Available Full-Wave EM Simulation Tools for Microwave Passive Devices. In: Int. Conf. on Computer as a Tool (EUROCON), vol. 2, pp. 1699–1702 (2005)

    Google Scholar 

  16. Nieuwoudt, M., McCorquodale, M.S., et al.: Accurate Analytical Spiral Inductor Modeling Techniques for Efficient Design Space Exploration. IEEE Electron. Device Lett. 27(12), 998–1001 (2006)

    Article  Google Scholar 

  17. Zito, D., Pepe, D., Neri, B.: Wide-Band Frequency-Independent Equivalent Circuit Model for Integrated Spiral Inductors in (Bi)CMOS Technology. In: IEEE Int. Conf. on Electronics Circuits and Syst. (ICECS), pp. 478–481 (2006)

    Google Scholar 

  18. Ahn, Y.G., Kim, S.K., et al.: Efficient Scalable Modeling of Double-Equivalent Circuit for On-Chip Spiral Inductors. IEEE Trans. on Microw. Theory and Tech. 57(10), 2289–2300 (2009)

    Article  Google Scholar 

  19. Talwalkar, N.A., Yue, C.P., Wong, S.S.: Analysis and synthesis of on-chip spiral inductors. IEEE Trans. on Electron. Devices 52(2), 176–182 (2005)

    Article  Google Scholar 

  20. Rotella, F., Bhattacharya, B.K., Blaschke, V.: A broadband lumped element analytic model incorporating skin effect and substrate loss for inductors and inductor like components for silicon technology performance assessment and RFIC design. IEEE Trans. on Electron. Devices 52(7), 1429–1441 (2005)

    Article  Google Scholar 

  21. Gao, W., Yu, Z.: Scalable compact circuit model and synthesis for RF CMOS spiral inductors. IEEE Trans. on Microwave Theory and Techniques 54(3), 1055–1064 (2006)

    Article  MathSciNet  Google Scholar 

  22. Chen, J., Liou, J.J.: Improved and physics-based model for symmetrical spiral inductors. IEEE Trans. on Microw. Theory and Tech. 53(6), 1300–1309 (2006)

    Google Scholar 

  23. Lai, I.C.H., Fujishima, M.: A new on-chip substrate-coupled inductor model implemented with scalable expressions. IEEE J. of Solid-State Circuits 41(11), 2491–2499 (2006)

    Article  Google Scholar 

  24. Huo, X., Chan, P.C.H., et al.: A physical model for on-chip spiral inductors with accurate substrate modeling. IEEE Trans. on Electron. Devices 53(12), 176–182 (2006)

    Article  Google Scholar 

  25. Wang, C., Liao, H., et al.: A wideband predictive double-pi equivalent-circuit model for on-chip spiral inductors. IEEE Trans. on Electron. Devices 56(4) (2009)

    Google Scholar 

  26. Mohan, S.S., Hershenson, M.M., et al.: Simple accurate expressions for planar spiral inductances. IEEE J. of Solid-State Circuits 34(10), 1419–1424 (1999)

    Article  Google Scholar 

  27. Choi, Y.S., Yoon, J.B.: Experimental analysis of the effect of metal thickness on the quality factor in integrated spiral inductors for RF ICs. IEEE Electron. Device Lett. 25(29), 76–79 (2004)

    Article  Google Scholar 

  28. Yue, C.P., Wong, S.S.: Design strategy of on-chip inductors for highly integrated RF systems. In: Proc. of Design Automation Conf., pp. 982–987 (1999)

    Google Scholar 

  29. http://www.ansoft.com/products/hf/hfss/ (accessed July 17, 2012)

  30. Mounet, C., Siligaris, A.: Employing 65nm CMOS for WPAN Applications Partner Companies (2010), http://www.ansoft.com/firstpass/pdf/Employing_65nm_CMOS_for_WPAN_Applications.pdf (accessed July 17, 2012)

  31. Aluigi, L., Alimenti, F., Roselli, L.: Automatic Design and 3D Electromagnetic Simulation of Sub-nH Spiral Inductors. In: Proc. of Prog. in Electromagn. Res. Symp. (PIERS), pp. 1719–1722 (2011)

    Google Scholar 

  32. Koolen, M.C.A.M., Geelen, J.A.M., et al.: An improved de-embedding technique for on-wafer high-frequency characterization. IEEE Proc. of Bipolar Circuits and Technol. Meet., 188–191 (1991)

    Google Scholar 

  33. Voinigescu, S.P.: HF Integrated Circuit. Short Course at the Univ. of Pisa, Pisa, Italy (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aluigi, L., Alimenti, F., Roselli, L., Pepe, D., Zito, D. (2013). MIDAS: Microwave Inductor Design Automation on Silicon. In: Fakhfakh, M., Tlelo-Cuautle, E., Castro-Lopez, R. (eds) Analog/RF and Mixed-Signal Circuit Systematic Design. Lecture Notes in Electrical Engineering, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36329-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36329-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36328-3

  • Online ISBN: 978-3-642-36329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics