Skip to main content

Optimization of Sub-threshold Slope in Submicron MOSFET’s for Switching Applications

  • Conference paper
Advances in Computing, Communication, and Control (ICAC3 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 361))

  • 2834 Accesses

Abstract

Scaling transistors into the nano-meter regime has resulted in a dramatic increase in MOS leakage current. Threshold voltages of transistors have scaled to maintain performance at reduced power supply voltages. Increased transistor leakages not only impact the overall power consumed by a CMOS system, but also reduce the margins available for design due to the strong relationship between process variation and leakage power. Therefore it is essential for circuit and system designers to understand the components of leakage, sensitivity of leakage to different design parameters, and leakage mitigation techniques by designing accurate models of short channel devices and simulating the same using the available standard CAD tools. This paper provides ways to optimize the sub-threshold slope in submicron devices which is an important parameter that defines transistor efficiency in switching applications using standard CAD tools like SILVACO and SPICE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moore, G.E.: Cramming more components onto Integrated circuits. Electronics 38(8) (April 19, 1965)

    Google Scholar 

  2. Piguet, C.: Are early computer architectures a source of ideas for low-power?. Invited Paper, Volta 1999, Como, Italy, March 4-5 (1999)

    Google Scholar 

  3. Piguet, C.: Histoire des ordinateurs. Invited Paper at FTFC 1999, Paris, May 26-28, pp. 7–16 (1999)

    Google Scholar 

  4. Baccarani, G., Wordeman, M., Dennard, R.: Generalized Scaling Theory and Its Application to 1/4 Micrometer MOSFET Design. IEEE Trans. Electron Devices ED-31(4), 452 (1984)

    Article  Google Scholar 

  5. Meindl, P.J., Swanson, R.: Design of Ion-Implanted MOSFETS with Very Small Physical Dimensions. IEEE Journal of Solid-State Circuits SC-9, 256–258 (1972)

    Google Scholar 

  6. Ko, P.: Approaches to Scaling. In: VLSI Electronics: Microstructure Science, ch. 1, vol. 18, pp. 1–37. Academic Press (1989)

    Google Scholar 

  7. Nagel, L.: SPICE2: a Computer Program to Simulate Semiconductor Circuits, MemoERL-M520, Dept. Elect. and Computer Science, University of California at Berkeley (1975)

    Google Scholar 

  8. Thorpe, T.: Computerized Circuit Analysis with SPICE. John Wiley and Sons (1992)

    Google Scholar 

  9. Massobrio, G., Vladimirescu, P.: The SPICE Book. John Wiley and Sons (1993)

    Google Scholar 

  10. Antognetti, Semiconductor Device Modelling with SPICE, 2nd edn. McGraw-Hill, New York (1993)

    Google Scholar 

  11. Meyer, J.E.: MOS models and circuit simulation. RCA Review 32, 42–63 (1971)

    Google Scholar 

  12. Jeng, M.C., Lee, P.M., Kuo, M.M., Ko, P.K., Hu, C.: Theory, Algorithms, and User’s Guide for BSIM and SCALP, Electronic Research Laboratory Memorandum, UCB/ERL M87/35. University of California, Berkeley (2008)

    Google Scholar 

  13. Sheu, B.J., Scharfetter, D.L., Ko, P.K., Jeng, M.C.: BSIM, Berkeley short-channel IGFET model. IEEE Journal of Solid-State Circuits SC-22, 558–566 (2005)

    Article  Google Scholar 

  14. Yang, P., Chatterjee, P.K.: SPICE modelling for small geometry MOSFET circuits. IEEE Transactions on Computer-Aided Design CAD-1(4), 169–182 (1999)

    Article  Google Scholar 

  15. Lee, S.-W., Rennick, R.C.: A compact IGFET model-ASIM. IEEE Transactions on Computer-Aided Design 7(9), 952–975 (2001)

    Article  Google Scholar 

  16. Lee, K., Shur, M., Fjeldly, T.A., Ytterdal, Y.: Semiconductor Device Modelling for VLSI. Prentice-Hall, Inc., Englewood Cliffs (2009)

    Google Scholar 

  17. Cheng, Y., Chan, M., Hui, K., Jeng, M., Liu, Z., Huang, J., Chen, K., Tu, R., Ko, P.K., Hu, C.: BS1M3v3 Manual. Department of Electrical Engineering and Computer Science. University of California, Berkeley (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masurkar, A.U., Mahadik, S. (2013). Optimization of Sub-threshold Slope in Submicron MOSFET’s for Switching Applications. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds) Advances in Computing, Communication, and Control. ICAC3 2013. Communications in Computer and Information Science, vol 361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36321-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36321-4_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36320-7

  • Online ISBN: 978-3-642-36321-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics