Big Data Analytics on Modern Hardware Architectures: A Technology Survey

  • Michael Saecker
  • Volker Markl
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 138)


Big Data Analytics has the goal to analyze massive datasets, which increasingly occur in web-scale business intelligence problems. The common strategy to handle these workloads is to distribute the processing utilizing massive parallel analysis systems or to use big machines able to handle the workload. We discuss massively parallel analysis systems and their programming models. Furthermore, we discuss the application of modern hardware architectures for database processing. Today, many different hardware architectures apart from traditional CPUs can be used to process data. GPUs or FPGAs, among other new hardware, are usually employed as co-processors to accelerate query execution. The common point of these architectures is their massive inherent parallelism as well as a different programming model compared to the classical von Neumann CPUs. Such hardware architectures offer the processing capability to distribute the workload among the CPU and other processors, and enable systems to process bigger workloads.


Modern Hardware Architectures GPGPU GPU APU FPGA DBMS Big Data Analytics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CERN: Worldwide LHC Computing Grid (December 2011),
  2. 2.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Hung Byers, A.: Big Data: The Next Frontier for Innovation, Competition, and Productivity (June 2011),
  3. 3.
    Liu, X., Thomsen, C., Bach Pedersen, T.: The ETLMR MapReduce-Based ETL Framework. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 586–588. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Alexandrov, A., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp, E., Warneke, D.: MapReduce and PACT - Comparing Data Parallel Programming Models. In: Proceedings of the 14th Conference on Database Systems for Business, Technology, and Web, BTW 2011, pp. 25–44. GI, Bonn (2011)Google Scholar
  5. 5.
    Gillick, D., Faria, A., Denero, J.: MapReduce: Distributed Computing for Machine Learning (2006)Google Scholar
  6. 6.
    Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V., Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: Declarative Machine Learning on MapReduce. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 231–242. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  7. 7.
    Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: Mining Peta-scale Graphs. Knowl. Inf. Syst. 27(2), 303–325 (2011)CrossRefGoogle Scholar
  8. 8.
    Cohen, J.: Graph Twiddling in a MapReduce World. Computing in Science Engineering 11(4), 29–41 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhao, W., Ma, H., He, Q.: Parallel K-Means Clustering Based on MapReduce. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 674–679. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    The Apache Software Foundation: Applications powered by Hadoop (December 2011),
  11. 11.
    Facebook: Hadoop (December 2011),
  12. 12.
    Office of Electricity Delivery & Energy Reliability, U.S. Department of Energy: Smart Grid (December 2011),
  13. 13.
    Henschen, D.: 12 Top Big Data Analytics Players (December 2011),
  14. 14.
    Amdahl, G.M.: Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS 1967 (Spring), pp. 483–485. ACM, New York (1967)CrossRefGoogle Scholar
  15. 15.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. IEEE Transactions on Networking 11 (February 2003)Google Scholar
  16. 16.
    Computer History Museum: 1965 - “Moore’s Law” Predicts the Future of Integrated Circuits (December 2011),
  17. 17.
    Intel Corporation: White Paper: Intel Next Generation Intel Microarchitecture (Nehalem) (2008),
  18. 18.
    Intel Corporation: Intel Xeon Processor 7500 Series: Product Brief (December 2011),
  19. 19.
    Intel Corporation: Intel Xeon Processor E7-8870 Specification (December 2011),
  20. 20.
    Advanced Micro Devices, Inc.: AMD Opteron 6282 SE Specification (December 2011),
  21. 21.
    Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 377–387 (1970)CrossRefGoogle Scholar
  22. 22.
    Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J.N., Griffiths, P.P., King, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu, G.R., Traiger, I.L., Wade, B.W., Watson, V.: System R: Relational Approach to Database Management. ACM Trans. Database Syst. 1, 97–137 (1976)CrossRefGoogle Scholar
  23. 23.
    Held, G.D., Stonebraker, M.R., Wong, E.: INGRES: A Relational Data Base System. In: Proceedings of the May 19-22, 1975, National Computer Conference and Exposition, AFIPS 1975, pp. 409–416. ACM, New York (1975)CrossRefGoogle Scholar
  24. 24.
    Copeland, G.P., Khoshafian, S.N.: A Decomposition Storage Model. In: Proceedings of the 1985 ACM SIGMOD International Conference on Management of Data, SIGMOD 1985, pp. 268–279. ACM, New York (1985)CrossRefGoogle Scholar
  25. 25.
    Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the Memory Wall in MonetDB. Communications of the ACM 51(12), 77–85 (2008)CrossRefGoogle Scholar
  26. 26.
    Boncz, P.A., Manegold, S., Kersten, M.L.: Database Architecture Optimized for the New Bottleneck: Memory Access. In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB 1999, pp. 54–65. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  27. 27.
    Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a Modern Processor: Where Does Time Go? In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB 1999, pp. 266–277. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  28. 28.
    Plattner, H., Zeier, A.: In-Memory Data Management: An Inflection Point for Enterprise Applications. Springer (2011)Google Scholar
  29. 29.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik, S.B.: C-Store: A Column-oriented DBMS. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.K., Ooi, B.C. (eds.) VLDB, pp. 553–564. ACM (2005)Google Scholar
  30. 30.
    Vertica: Vertica (December 2011),
  31. 31.
    Actian Corporation: Vectorwise (December 2011),
  32. 32.
    Fushimi, S., Kitsuregawa, M., Tanaka, H.: An Overview of the System Software of a Parallel Relational Database Machine GRACE. In: Proceedings of the 12th International Conference on Very Large Data Bases, VLDB 1986, pp. 209–219. Morgan Kaufmann Publishers Inc., San Francisco (1986)Google Scholar
  33. 33.
    DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar, K.B., Muralikrishna, M.: GAMMA - A High Performance Dataflow Database Machine. In: Proceedings of the 12th International Conference on Very Large Data Bases, VLDB 1986, pp. 228–237. Morgan Kaufmann Publishers Inc., San Francisco (1986)Google Scholar
  34. 34.
    Teradata Corporation: Teradata (December 2011),
  35. 35.
    EMC Corporation: Greenplum (December 2011),
  36. 36.
    Teradata Corporation: Aster Data (December 2011),
  37. 37.
    Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A Practical Approach to Self-describing, Polymorphic, and Parallelizable User-defined Functions. Proc. VLDB Endow. 2, 1402–1413 (2009)Google Scholar
  38. 38.
    empulse GmbH: ParStream (December 2011),
  39. 39.
    Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003, pp. 29–43. ACM, New York (2003)CrossRefGoogle Scholar
  40. 40.
    The Apache Software Foundation: Welcome to Hadoop! (December 2011),
  41. 41.
    Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-Foreign Language for Data Processing. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1099–1110. ACM, New York (2008)CrossRefGoogle Scholar
  42. 42.
    The Apache Software Foundation: Welcome to Apache Pig! (December 2011),
  43. 43.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: A Warehousing Solution Over a Map-Reduce Framework. Proc. VLDB Endow. 2, 1626–1629 (2009)Google Scholar
  44. 44.
    The Apache Software Foundation: Welcome to Hive! (December 2011),
  45. 45.
    Jaql - Query Language for JavaScript Object Notation (JSON) (December 2011),
  46. 46.
    Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.C., Ozcan, F., Shekita, E.J.: Jaql: A Scripting Language for Large Scale Semistructured Data Analysis. In: PVLDB 2011, pp. 1272–1283 (2011)Google Scholar
  47. 47.
  48. 48.
    Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. In: EuroSys 2007: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, pp. 59–72. ACM, New York (2007)CrossRefGoogle Scholar
  49. 49.
  50. 50.
    Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.: DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. In: Draves, R., van Renesse, R. (eds.) OSDI, pp. 1–14. USENIX Association (2008)Google Scholar
  51. 51.
    Microsoft Research: The LINQ project (December 2011),
  52. 52.
    Chaiken, R., Jenkins, B., Larson, P.A., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. Proc. VLDB Endow. 1, 1265–1276 (2008)Google Scholar
  53. 53.
    Borkar, V.R., Carey, M.J., Grover, R., Onose, N., Vernica, R.: Hyracks: A Flexible and Extensible Foundation for Data-intensive Computing. In: ICDE, pp. 1151–1162 (2011)Google Scholar
  54. 54.
    Behm, A., Borkar, V.R., Carey, M.J., Grover, R., Li, C., Onose, N., Vernica, R., Deutsch, A., Papakonstantinou, Y., Tsotras, V.J.: ASTERIX: Towards a Scalable, Semistructured Data Platform for Evolving-world Models. Distrib. Parallel Databases 29, 185–216 (2011)CrossRefGoogle Scholar
  55. 55.
    XQuery 1.0: An XML Query Language (December 2011),
  56. 56.
    Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale Analytical Processing. In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, pp. 119–130. ACM, New York (2010)CrossRefGoogle Scholar
  57. 57.
    DeWitt, D.J.: DIRECT - A Multiprocessor Organization for Supporting Relational Data Base Management Systems. In: Proceedings of the 5th Annual Symposium on Computer Architecture, ISCA 1978, pp. 182–189. ACM, New York (1978)CrossRefGoogle Scholar
  58. 58.
    Downes-Powell, G.: What is a PROM Chip? (December 2011),
  59. 59.
    FPGA Central: History of the Programmable Logic (December 2011),
  60. 60.
    Brown, S., Rose, J.: Architecture of FPGAs and CPLDs: A Tutorial. IEEE Design and Test of Computers 13, 42–57 (1996)CrossRefGoogle Scholar
  61. 61.
    EngineersGarage: Field Programmable Gate Array (FPGA) (December 2011),
  62. 62.
    Mueller, R., Teubner, J., Alonso, G.: Data Processing on FPGAs. Proc. VLDB Endow. 2, 910–921 (2009)Google Scholar
  63. 63.
    Mueller, R., Teubner, J., Alonso, G.: Sorting Networks on FPGAs. The VLDB Journal, 1–23, doi:10.1007/s00778-011-0232-zGoogle Scholar
  64. 64.
    Mitra, A., Vieira, M.R., Bakalov, P., Tsotras, V.J., Najjar, W.A.: Boosting XML Filtering Through a Scalable FPGA-based Architecture. In: CIDR (2009)Google Scholar
  65. 65.
    Greaves, D., Singh, S.: Kiwi: Synthesis of FPGA Circuits from Parallel Programs. In: 16th International Symposium on Field-Programmable Custom Computing Machines, FCCM 2008, pp. 3–12 (April 2008)Google Scholar
  66. 66.
  67. 67.
    Kickfire (December 2011),
  68. 68.
    Scofield, T., Delmerico, J., Chaudhary, V., Valente, G.: XtremeData dbX: An FPGA-Based Data Warehouse Appliance. Computing in Science Engineering 12(4), 66–73 (2010)CrossRefGoogle Scholar
  69. 69. About GPGPU (December 2011),
  70. 70.
    NVIDIA: CUDA: Parallel Programming Made Easy (December 2011),
  71. 71.
    Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics 23, 777–786 (2004)CrossRefGoogle Scholar
  72. 72.
    Khronos Group: The Khronos Group Releases OpenCL 1.0 Specification (December 2011),
  73. 73.
    Microsoft: DirectX 11 DirectCompute: A Teraflop for Everyone (December 2011),
  74. 74. Top 500 Supercomputers (November 2011),
  75. 75.
    PCI-SIG: PCIe 3.0 FAQ (December 2011),
  76. 76.
    NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Fermi (December 2011),
  77. 77.
    NVIDIA: NVIDIA Tesla C2075 (December 2011),
  78. 78.
    NVIDIA: NVIDIA CUDA C Programming Guide (2011)Google Scholar
  79. 79.
    Govindaraju, N., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High Performance Graphics Co-processor Sorting for Large Database Management. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD 2006, pp. 325–336. ACM, New York (2006)CrossRefGoogle Scholar
  80. 80.
    Leischner, N., Osipov, V., Sanders, P.: GPU Sample Sort. In: 24th IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–10 (2010)Google Scholar
  81. 81.
    Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey, P.: Fast Sort on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In: Proceedings of the 2010 International Conference on Management of Data, SIGMOD 2010, pp. 351–362. ACM, New York (2010)CrossRefGoogle Scholar
  82. 82.
    Merrill, D.G., Grimshaw, A.S.: Revisiting Sorting for GPGPU Stream Architectures. Technical Report CS2010-03, University of Virginia, Department of Computer Science, Charlottesville, VA (2010)Google Scholar
  83. 83.
    Satish, N., Harris, M., Garland, M.: Designing Efficient Sorting Algorithms for Manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp. 1–10. IEEE Computer Society, Washington, DC (2009)Google Scholar
  84. 84.
    Wassenberg, J., Sanders, P.: Faster Radix Sort via Virtual Memory and Write-Combining. CoRR abs/1008.2849 (2010)Google Scholar
  85. 85.
    He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N., Luo, Q., Sander, P.: Relational Query Coprocessing on Graphics Processors. ACM Transactions on Database Systems (TODS) 34(4), 21 (2009)CrossRefGoogle Scholar
  86. 86.
    He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Relational Joins on Graphics Processors. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 511–524. ACM (2008)Google Scholar
  87. 87.
    Rao, J., Ross, K.A.: Cache Conscious Indexing for Decision-Support in Main Memory. In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB 1999, pp. 78–89. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  88. 88.
    Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee, V.W., Brandt, S.A., Dubey, P.: FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs. In: Proceedings of the 2010 International Conference on Management of Data, SIGMOD 2010, pp. 339–350. ACM, New York (2010)CrossRefGoogle Scholar
  89. 89.
    Volk, P.B., Habich, D., Lehner, W.: GPU-Based Speculative Query Processing for Database Operations. In: First International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (September 2010)Google Scholar
  90. 90.
    Advanced Micro Devices, Inc.: AMD Demonstrates World’s First Fusion APU at Computex 2010 (December 2011),
  91. 91.
    Intel Corporation: Intel Atom Embedded Processors (December 2011),
  92. 92.
    Advanced Micro Devices, Inc.: AMD Fusion Family of APUs: Enabling a Superior, Immersive PC Experience (December 2011),
  93. 93.
    Feldman, M.: First HPC Cluster with AMD Fusion Chips Debuts at Sandia (December 2011),
  94. 94.
    Advanced Micro Devices, Inc.: Fusion for Servers (December 2011),
  95. 95.
  96. 96.
    Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P.: Larrabee: A Many-core x86 Architecture for Visual Computing. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH 2008, pp. 18:1–18:15. ACM, New York (2008)Google Scholar
  97. 97.
    Intel Corporation: Teraflops Research Chip (December 2011),
  98. 98.
    Intel Corporation: Single-Chip Cloud Computer (December 2011),
  99. 99.
    Intel Corporation: The SCC Platform Overview (December 2011),
  100. 100.
    Shilov, A.: Intel Shows Off ”Knights Corner” MIC Compute Accelerator (December 2011),
  101. 101.
    Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: Accelerating MapReduce with Graphics Processors. IEEE Transactions on Parallel and Distributed Systems 22, 608–620 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Saecker
    • 1
  • Volker Markl
    • 1
  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations