Skip to main content

Towards a General-Purpose, Reversible Language for Controlling Self-reconfigurable Robots

  • Conference paper
Book cover Reversible Computation (RC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7581))

Included in the following conference series:

Abstract

Self-reconfigurable, modular robots are distributed mechatronic devices that can autonomously change their physical shape. Self-reconfiguration from one shape to another is typically achieved through a specific sequence of actuation operations distributed across the modules of the robot. Automatically reversing the sequence of operations brings the robot back to its initial shape, as has been experimentally demonstrated using the DynaRole reversible language. DynaRole however only allows simple sequences of operations to be reversed, which is suitable for reversing self-reconfiguration sequences but lacks the generality needed to implement more complex behaviors.

In this paper we present initial ideas on generalizing the DynaRole language to support a wider range of modular robot control scenarios, while retaining the possibility of reversing distributed sequences. Reversibility is investigated as a practical feature, reducing the programming task of the programmer, and allowing error recovery by backing out of an error state using reverse execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular Self-Reconfigurable Robot Systems (Grand Challenges of Robotics). IEEE Robot. Automat. Mag. (March 2007)

    Google Scholar 

  2. Schultz, U.P., Bordignon, M., Stoy, K.: Robust and reversible execution of self-reconfiguration sequences. Robotica 29, 35–57 (2011), http://modular.mmmi.sdu.dk , accompanying video available at http://www.youtube.com/watch?v=SYizuooEs7s

    Article  Google Scholar 

  3. Østergaard, E., Kassow, K., Beck, R., Lund, H.: Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots 21(2), 165–183 (2006)

    Article  Google Scholar 

  4. Pamecha, A., Ebert-Uphoff, I., Chirikjian, G.S.: Useful metrics for modular robot motion planning. IEEE Transactions on Robotics and Automation (13), 531–545 (1997)

    Google Scholar 

  5. Kotay, K., Rus, D.: Algorithms for self-reconfiguring molecule motion planning. In: Proc. of the Int. Confe. on Intelligent Robots and Systems, IROS 2000 (2000)

    Google Scholar 

  6. Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: Motion planning of self-reconfigurable modular robot. In: Proc. of the Int. Symp. on Experimental Robotics (2000)

    Google Scholar 

  7. Brandt, D.: Comparison of A∗ and RRT-connect motion planning techniques for self-reconfiguration planning. In: Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2006), Beijing, China, pp. 892–897 (October 2006)

    Google Scholar 

  8. Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.: Graph signature for self-reconfiguration planning. In: 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2008), pp. 863–869 (2008)

    Google Scholar 

  9. Asadpour, M., Ashtiani, M.H.Z., Sproewitz, A., Ijspeert, A.: Graph signature for self-reconfiguration planning of modules with symmetry. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA (October 2009)

    Google Scholar 

  10. Prevas, K., Unsal, C., Efe, M., Khosla, P.: A hierarchical motion planning strategy for a uniform self-reconfigurable modular robotic system. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, vol. 1, pp. 787–792 (October 2002)

    Google Scholar 

  11. Ünsal, C., Khosla, P.: A multi-layered planner for self-reconfiguration of a uniform group of I-cube modules. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maoui, Hawaii, vol. 1, pp. 598–605 (2002)

    Google Scholar 

  12. Brandt, D., Christensen, D.J.: A new meta-module for controlling large sheets of atron modules. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, California (November 2007)

    Google Scholar 

  13. Yim, M., Goldberg, D., Casal, A.: Connectivity planning for closed-chain reconfiguration. In: Proceedings of Sensor Fusion and Decentralized Control in Robotics Systems III, Bellingham, WA, vol. 4196, pp. 402–412. SPIE (2000)

    Google Scholar 

  14. Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S.: A distributed method for reconfiguration of a three-dimensional homogeneous structure. Advanced Robotics (13), 363–379 (1999)

    Google Scholar 

  15. Ünsal, C., Kiliccöte, H., Khosla, P.K.: A modular self-reconfigurable bipartite robotic system: Implementation and motion planning. Autonomous Robots (10), 23–40 (2001)

    Google Scholar 

  16. Butler, Z., Rus, D.: Distributed planning and control for modular robots with unit-compressible modules. The International Journal of Robotics Research (22), 699–715 (2003)

    Google Scholar 

  17. Rosa, M.D., Goldstein, S., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting via hole motion: Motion planning in lattice-constrained modular robots. In: Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation, ICRA 2006 (2006)

    Google Scholar 

  18. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine, pp. 441–448 (1994)

    Google Scholar 

  19. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3d metamorphosis. Auton. Robots 10(1), 41–56 (2001)

    Article  MATH  Google Scholar 

  20. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed control for conro self-reconfigurable robots. IEEE Transactions on Robotics and Automation 18, 700–712 (2002)

    Article  Google Scholar 

  21. Christensen, D., Støy, K.: Selecting a meta-module to shape-change the ATRON self-reconfigurable robot. In: Proceedings of IEEE International Conference on Robotics and Automations (ICRA), Orlando, USA, pp. 2532–2538 (May 2006)

    Google Scholar 

  22. Christensen, D.J.: Experiments on fault-tolerant self-reconfiguration and emergent self-repair. In: Proceedings of Symposium on Artificial Life Part of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawaii (April 2007)

    Google Scholar 

  23. Bordignon, M., Stoy, K., Schultz, U.P.: A Virtual Machine-based Approach for Fast and Flexible Reprogramming of Modular Robots. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2009), Kobe, Japan, May 12-17, pp. 4273–4280 (2009)

    Google Scholar 

  24. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: CF 2008: Proc. of the 2008 Conference on Computing Frontiers, pp. 43–54. ACM, New York (2008)

    Chapter  Google Scholar 

  25. Zuliani: Logical reversibility. IBM Journal of Research and Development (6), 807–818 (2001)

    Google Scholar 

  26. Stoddart, B., Lynas, R., Zeyda, F.: A virtual machine for supporting reversible probabilistic guarded command languages. Electronic Notes in Theoretical Computer Science 253(6), 33–56 (2010); Proceedings of the Workshop on Reversible Computation (RC 2009)

    Article  Google Scholar 

  27. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bi-directional tree transformations: A linguistic approach to the view update problem. ACM Transactions on Programming Languages and Systems (3) (2007)

    Google Scholar 

  28. Brandt, D., Ostergaard, E.: Behaviour subdivision and generalization of rules in rule based control of the ATRON self-reconfigurable robot. In: Proceeding of the International Symposium on Robotics and Automation (ISRA), Queretaro, Mexico, pp. 67–74 (September 2004)

    Google Scholar 

  29. Schultz, U.: Towards a robust spatial computing language for modular robots. In: Proceedings of the 2012 Workshop on Spatial Computing, Spain (June 2012)

    Google Scholar 

  30. Christensen, D.J., Brandt, D., Stoy, K., Schultz, U.P.: A Unified Simulator for Self-Reconfigurable Robots. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2008), France, pp. 870–876 (2008)

    Google Scholar 

  31. Schultz, U.: Programming language abstractions for self-reconfigurable robots (poster). Accepted for publication in SPLASH Companion. ACM (October 2012)

    Google Scholar 

  32. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schultz, U.P. (2013). Towards a General-Purpose, Reversible Language for Controlling Self-reconfigurable Robots. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36315-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36314-6

  • Online ISBN: 978-3-642-36315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics