Skip to main content

Selected Topics of Local Regularity Theory for Navier–Stokes Equations

  • Chapter
  • First Online:
Topics in Mathematical Fluid Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2073))

Abstract

\(\mathbb{R}_{+} =\{ t \in \mathbb{R} :\,\, t > 0\}\), \(\mathbb{R}_{-} =\{ t \in \mathbb{R} :\,\, t < 0\}\); \(\mathbb{R}_{+}^{d} =\{ x = (x^\prime ,x_{d}) :\,\, x^\prime = (x_{i}),\,\,i = 1,2,\ldots ,d - 1,\,\,x_{d} > 0\}\); \(Q_{-} = {\mathbb{R}}^{d} \times R_{-}\), \(Q_{+} = {\mathbb{R}}^{d} \times R_{+}\); \(Q_{\delta ,T} = \Omega \times ]\delta ,T[\), \(Q_{T} = \Omega \times ]0,T[\), \(\Omega \subset {\mathbb{R}}^{d}\); B(x, r) is the ball in \({\mathbb{R}}^{d}\) of radius r centered at the point \(x \in {\mathbb{R}}^{d}\), B(r) = B(0, r), B = B(1); \(B_{+}(x,r) =\{ y = (y^\prime ,y_{d}) \in B(x,r) :\,\, y_{d} > x_{d}\}\) is a half ball, \(B_{+}(r) = B_{+}(0,r)\), \(B_{+} = B_{+}(1)\); Q(z, r) = B(x, r) ×]t − r 2, t[ is the parabolic ball in \({\mathbb{R}}^{d} \times \mathbb{R}\) of radius r centered at the point \(z = (x,t) \in {\mathbb{R}}^{d} \times \mathbb{R}\), Q(r) = Q(0, r), Q = Q(1); \(Q_{+}(r) = Q_{+}(0,r) = B_{+}(r)\times ] - {r}^{2},0[\); \(L_{s}(\Omega )\) and \(W_{s}^{1}(\Omega )\) are the usual Lebesgue and Sobolev spaces, respectively; \(L_{s,l}(Q_{T}) = L_{l}(0,T;L_{s}(\Omega ))\), \(L_{s}(Q_{T}) = L_{s,s}(Q_{T})\); \(W_{s,l}^{1,0}(Q_{T}) =\{ \vert v\vert + \vert \nabla v\vert \in L_{s,l}(Q_{T})\}\) and \(W_{s,l}^{1,0}(Q_{T}) =\{ \vert v\vert + \vert \nabla v\vert + \vert {\nabla }^{2}v\vert + \vert \partial v\vert \in L_{s,l}(Q_{T})\}\) are parabolic Sobolev spaces; \(C_{0,0}^{\infty }(\Omega ) =\{ v \in C_{0}^{\infty }(\Omega ) :\,\, \mathrm{div}\,v = 0\}\); \({ \circ \atop J} (\Omega )\) is the closure of the set \(C_{0,0}^{\infty }(\Omega )\) in the space \(L_{2}(\Omega )\), \({ \circ \atop J} _{2}^{1}(\Omega )\) is the closure of the same set with respect to the Dirichlet integral; BMO is the space of functions having bounded mean oscillation;

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Caffarelli, R.-V. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. XXXV, 771–831 (1982)

    Google Scholar 

  2. M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics, vol. 3 (2002)

    Google Scholar 

  3. C.-C. Chen, R.M. Strain, T.-P. Tsai, H.-T. Yau, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. Int. Math. Res. Not. 2008(article ID rnn016), 31 p (2008). doi:10.1093/imrn/rnn016

    Google Scholar 

  4. C.-C. Chen, R.M. Strain, T.-P. Tsai, H.-T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II. Comm. Partial Differ. Equ. 34, 203–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z.-M. Chen, W.G. Price, Blow-up rate estimates for weak solutions of the Navier–Stokes equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 2625–2642 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.L. Choe, J.L. Lewis, On the singular set in the Navier-Stokes equations. J. Function. Anal. 175, 348–369 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Escauriaza, Carleman inequalities and the heat operator. Duke Math. J. 104, 113–126 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Escauriaza, C.E. Kenig, G. Ponce, L. Vega, Decay at infinity of caloric functions within characteristic hyperplanes. Math. Res. Lett. 13, 441–453 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Escauriaza, G. Seregin, V. Šverák, On backward uniqueness for parabolic equations. Zap. Nauchn. Seminar. POMI 288, 100–103 (2002)

    Google Scholar 

  10. L. Escauriaza, G. Seregin, V. Šverák, On backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169(2), 147–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Escauriaza, G. Seregin, V. Šverák, L 3,  -solutions to the Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58(2), 211–250 (2003)

    Article  Google Scholar 

  12. L. Escauriaza, L. Vega, Carleman inequalities and the heat operator II. Indiana Univ. Math. J. 50, 1149–1169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Escauriaza, G. Seregin, V. Šverák, On backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169(2), 147–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Fefferman, http://www.claymath.org/millennium/Navier-Stokesequations

  15. Y. Giga, Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes equations. J. Differ. Equ. 62, 186–212 (1986)

    Article  MathSciNet  Google Scholar 

  16. S. Gustafson, K. Kang, T.-P. Tsai, Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations. Comm. Math. Phys. 273, 161–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950–1951)

    Google Scholar 

  18. L. Hörmander, Linear Partial Differential Operators (Springer, 1963)

    Google Scholar 

  19. K. Kang, Unbounded normal derivative for the Stokes system near boundary. Math. Ann. 331, 87–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Kato, Strong L p -solutions of the Navier–Stokes equation in R m, with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Kikuchi, G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality. AMS Trans. Ser. 2 220, 141–164

    Google Scholar 

  22. H. Kim, H. Kozono, Interior regularity criteria in weak spaces for the Navier–Stokes equations. Manuscripta Math. 115, 85–100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 203, 83–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. O.A. Ladyzhenskaya, Mathematical Problems of the Dynamics of Viscous Incompressible Fluids, 2nd edn. (Nauka, Moscow, 1970)

    Google Scholar 

  26. O.A, Ladyzhenskaya, On unique solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations under the axial symmetry. Zap. Nauchn. Sem. LOMI 7, 155–177 (1968)

    Google Scholar 

  27. O.A. Ladyzhenskaya, G.A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech 1, 356–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralt’seva, Linear and Quasi-Linear Equations of Parabolic Type, Moscow, 1967 (English translation, American Mathematical Society, Providence, 1968)

    Google Scholar 

  29. O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and Quasilinear Equations of Elliptic Type (Nauka, Moscow, 1973)

    MATH  Google Scholar 

  30. P.G. Lemarie-Riesset, Recent Developemnets in the Navier-Stokes Problem, Chapman&Hall/CRC reseacrh notes in mathematics series, vol. 431

    Google Scholar 

  31. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  32. F.-H. Lin, A new proof of the Caffarelly-Kohn-Nirenberg theorem. Comm. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Micu, E. Zuazua, On the lack of null-controllability of the heat equation on the half space. Portugaliae Math. 58(1), 1–24 (2001)

    MathSciNet  MATH  Google Scholar 

  34. J. Necas, M. Ruzicka, V. Šverák, On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176, 283–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations. Pac. J. Math. 66, 535–552 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Scheffer, Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55, 97–112 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Scheffer, The Navier-Stokes equations in a bounded domain. Comm. Math. Phys. 73, 1–42 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Scheffer, Boundary regularity for the Navier-Stokes equations in a half-space. Comm. Math. Phys. 85, 275–299 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. G.A. Seregin, Interior regularity for solutions to the modified Navier-Stokes equations. J. Math. Fluid Mech. 1(3), 235–281 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Seregin, in Local regularity theory of the Navier-Stokes equations, ed. by Friedlander, D. Serre. Handbook of Mathematical Fluid Mechanics, vol. 4, pp. 159–200

    Google Scholar 

  41. G.A. Seregin, Estimates of suitable weak solutions to the Navier-Stokes equations in critical Morrey spaces. J. Math. Sci. 143(2), 2961–2968 (2007)

    Article  MathSciNet  Google Scholar 

  42. G. Seregin, A note on local boundary regularity for the Stokes system. Zapiski Nauchn. Seminar. POMI. v. 370, 151–159 (2009)

    Google Scholar 

  43. G. Seregin, Local regularity for suitable weak solutions of the Navier-Stokes equations. Russ. Math. Surveys 62(3), 595–614

    Google Scholar 

  44. G.A. Seregin, On the number of singular points of weak solutions to the Navier-Stokes equations. Comm. Pure Appl. Math. 54(8), 1019–1028 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. G.A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary. J. Math. Fluid Mech. 4(1), 1–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. G.A. Seregin, Differentiability properties of weak solutions to the Navier-Stokes equations. Algebra Anal. 14(1), 193–237 (2002)

    Google Scholar 

  47. G.A. Seregin, Navier-Stokes equations: almost L 3,  -cases. J. Math. Fluid Mech. 9, 34–43 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Seregin, A note on necessary conditions for blow-up of energy solutions to the Navier-Stokes equations [arXiv:0909.3897]

    Google Scholar 

  49. G. Seregin, V. Šverák, On Type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations. Comm. PDEs 34, 171–201 (2009)

    Article  MATH  Google Scholar 

  50. G. Seregin, V. Šverák, On a bounded shear flow in half space. Zapiski Nauchn. Seminar POMI (2010) (to appear)

    Google Scholar 

  51. G. Seregin, W. Zajaczkowski, A sufficient condition of local regularity for the Navier-Stokes equations. Zapiski Nauchn. Seminar POMI 336, 46–54 (2006)

    MATH  Google Scholar 

  52. G. Seregin, W. Zajaczkowski, A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations, SIMA J. Math. Anal. (39), 669–685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  54. E. Stein, Singular Integrals and Differentiabilty Properties of Functions (Princeton University Press, Princeton, 1970)

    Google Scholar 

  55. M. Struwe, On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math. 41, 437–458 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math. 69, 237–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Tataru, Carleman estimates, unique continuation, and applications, notes downloadable from http://math.berkeley.edu/~tataru/ucp.html

  58. M.R. Ukhovskij, V.L. Yudovich, Axially symmetric motions of ideal and viscous fluids filling all space. Prikl. Mat. Mech. 32, 59–69 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Seregin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seregin, G. (2013). Selected Topics of Local Regularity Theory for Navier–Stokes Equations. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics(), vol 2073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36297-2_5

Download citation

Publish with us

Policies and ethics