An Agent Collaboration-Based Data Hierarchical Caching Approach for HD Video Surveillance

  • Wenjia Niu
  • Xinghua Yang
  • Gang Li
  • Endong Tong
  • Hui Tang
  • Song Ci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7607)


In the research of networked HD video surveillance, the agent collaboration has been utilized as an emerging solution to collaborative caching in order to achieve effective adaption among the front-end HD video capture, the network data transmission and the data management for lossless video storage and complete playback. However, the cluster characteristic of various caches embedded in the IP camera, the network proxy server and the data management server, essentially contain important knowledge. How to utilize the cache clustering for collaborative stream controlling is still an open problem. In this paper, we propose an agent collaboration-based 3-level caching (AC3Caching) model, in which a cache storage space-based AP clustering mechanism is developed for fast grouping of “similar” caches on different levels. Furthermore, based on the cache cluster, transmission planning is designed based on the agent collaboration and reasoning. The experimental evaluations demonstrate the capability of the proposed approach.


Video Surveillance Agent Reasoning Planning Cache Cluster Stream Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, L.: Data mining and multi-agent integration. Springer-Verlag New York Inc. (2009)Google Scholar
  2. 2.
    Cao, L., Gorodetsky, V., Mitkas, P.A.: Agent mining: The synergy of agents and data mining. IEEE Intelligent Systems 24(3), 64–72 (2009)CrossRefGoogle Scholar
  3. 3.
    Cao, L., Weiss, G., Yu, P.S.: A brief introduction to agent mining. In: Autonomous Agents and Multi-Agent Systems, pp. 1–6 (2012)Google Scholar
  4. 4.
    Cheung, G., Tan, W., Yoshimura, T.: Rate-distortion optimized application-level retransmission using streaming agent for video streaming over 3g wireless network. In: Proceedings of the 2002 International Conference on Image Processing, vol. 1, pp. I–529. IEEE (2002)Google Scholar
  5. 5.
    DeLisi, C.: Theory of clustering of cell surface receptors by ligands of arbitrary valence: dependence of dose response patterns on a coarse cluster characteristic. Mathematical Biosciences 52(3-4), 159–184 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development 31(2), 249–260 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Krishnaswamy, S., Zaslavsky, A., Loke, S.W.: An architecture to support distributed data mining services in e-commerce environments. In: Wecwis, p. 239. IEEE Computer Society (2000)Google Scholar
  9. 9.
    Lawton, G.: Working today on tomorrow’s storage technology. Computer 39(12), 19–22 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lee, U., Magistretti, E., Gerla, M., Bellavista, P., Liò, P., Lee, K.W.: Bio-inspired multi-agent collaboration for urban monitoring applications. In: Bio-Inspired Computing and Communication, pp. 204–216 (2008)Google Scholar
  11. 11.
    Li, C., Gao, Y.: Agent-based pattern mining of discredited activities in public services. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2006 Workshops, pp. 15–18. IEEE (2007)Google Scholar
  12. 12.
    Niu, W., Li, G., Zhao, Z., Tang, H., Shi, Z.: Carsa: A context-aware reasoning-based service agent model for ai planning of web service composition. Journal of Network and Computer Applications (2011)Google Scholar
  13. 13.
    Ponnusamy, S.P., Kathikeyan, E.: Hp proxy: Hot-point proxy caching with multivariate sectoring for multimedia streaming. European Journal of Scientific Research 68(1), 21–35 (2012)Google Scholar
  14. 14.
    Ramesh, S., Rhee, I., Guo, K.: Multicast with cache (mcache): An adaptive zero-delay video-on-demand service. IEEE Transactions on Circuits and Systems for Video Technology 11(3), 440–456 (2001)CrossRefGoogle Scholar
  15. 15.
    Rejaie, R., Kangasharju, J.: Mocha: A quality adaptive multimedia proxy cache for internet streaming. In: Proceedings of the 11th International Workshop on Network and Operating Systems Support for Digital Audio and Video, pp. 3–10. ACM (2001)Google Scholar
  16. 16.
    Shen, B., Lee, S.J., Basu, S.: Caching strategies in transcoding-enabled proxy systems for streaming media distribution networks. IEEE Transactions on Multimedia 6(2), 375–386 (2004)CrossRefGoogle Scholar
  17. 17.
    Tran, D.A., Hua, K.A., Sheu, S.: A new caching architecture for efficient video-on-demand services on the internet. In: Proceedings of the 2003 Symposium on Applications and the Internet, pp. 172–181. IEEE (2003)Google Scholar
  18. 18.
    Wang, B., Sen, S., Adler, M., Towsley, D.: Optimal proxy cache allocation for efficient streaming media distribution. In: Proceedings of the IEEE Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2002, vol. 3, pp. 1726–1735. IEEE (2002)Google Scholar
  19. 19.
    Wang, C.H., Chang, R.I., Ho, J.M.: Collaborative video surveillance for distributed visual data mining of potential risk and crime detection. In: Surveillance Technologies and Early Warning Systems: Data Mining Applications for Risk Detection, p. 194 (2010)Google Scholar
  20. 20.
    Wang, X., Niu, W., Li, G., Yang, X., Shi, Z.: Mining Frequent Agent Action Patterns for Effective Multi-agent-Based Web Service Composition. In: Cao, L., Bazzan, A.L.C., Symeonidis, A.L., Gorodetsky, V.I., Weiss, G., Yu, P.S. (eds.) ADMI 2011. LNCS, vol. 7103, pp. 211–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wenjia Niu
    • 1
  • Xinghua Yang
    • 1
  • Gang Li
    • 2
  • Endong Tong
    • 1
  • Hui Tang
    • 1
  • Song Ci
    • 1
    • 3
  1. 1.Institute of AcousticsChinese Academy of Science, High Performance Network LaboratoryBeijingChina
  2. 2.School of Information TechnologyDeakin UniversityAustralia
  3. 3.University of Nebraska-LincolnOmahaUSA

Personalised recommendations