Advertisement

Agent-Mining of Grid Log-Files: A Case Study

  • Arjan J. R. Stoter
  • Simon Dalmolen
  • Wico Mulder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7607)

Abstract

Grid monitoring requires analysis of large amounts of log files across multiple domains. An approach is described for automated extraction of job-flow information from large computer grids, using software agents and genetic computation. A prototype was created as a first step towards communities of agents that will collaborate to learn log-file structures and exchange knowledge across organizational domains.

Keywords

Grid monitoring text mining agent oriented programming genetic computation engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    EGEE: EGEE Homepage, http://public.eu-egee.org/
  2. 2.
    Mulder, W., Jacobs, C.: Grid management support by means of collaborative learning agents. In: Proceedings of the 6th International Conference Industry Session on Grids Meets Autonomic Computing, pp. 43–50. ACM (2009)Google Scholar
  3. 3.
    Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Communications of the ACM 55, 55–61 (2012)CrossRefGoogle Scholar
  4. 4.
    Russell, S., Norvig, P.: Artificial Intelligence: A modern approach, 3rd edn. Prentice-Hall, New Jersey (2009)Google Scholar
  5. 5.
    Cao, L., Gorodetsky, V., Mitkas, P.A.: Agent Mining: The Synergy of Agents and Data Mining. IEEE Intelligent Systems 24(3), 64–72 (2009)CrossRefGoogle Scholar
  6. 6.
    Cao, L.: Data Mining and Multi-agent Integration (edited). Springer (2009)Google Scholar
  7. 7.
    Cao, L., Weiss, G., Yu, P.S.: A Brief Introduction to Agent Mining. Journal of Autonomous Agents and Multi-Agent Systems 25, 419–424 (2012)CrossRefGoogle Scholar
  8. 8.
    Feldman, R., Sanger, J.: The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge University Press (2007)Google Scholar
  9. 9.
    Koza, J.R., Keane, M.A., Streeter, M.J., Adams, T.P., Jones, L.W.: Invention and creativity in automated design by means of genetic programming. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 18, 245–269 (2004)CrossRefGoogle Scholar
  10. 10.
    Conrad, E.: Detecting Spam with Genetic Regular Expressions. SANS Institute Reading Room (2007), http://www.giac.org/certified_professionals/practicals/GCIA/0.793
  11. 11.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with JADE. Wiley (2007)Google Scholar
  12. 12.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Information Processing Letters 24, 377–380 (1987)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arjan J. R. Stoter
    • 1
  • Simon Dalmolen
    • 1
    • 2
  • Wico Mulder
    • 1
  1. 1.LogicaAmstelveenThe Netherlands
  2. 2.School of Management & GovernanceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations