Advertisement

Agents and Distributed Data Mining in Smart Space: Challenges and Perspectives

  • Vladimir Gorodetsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7607)

Abstract

Smart space is a distributed ambient environment with existing, inside it, dynamic set of inhabitants (living and nonliving) solving various own and common tasks. The mission of smart space is to provide, for its inhabitants, with context–dependent information, communication, services, reminders and personalized recommendations in a user–friendly mode where and when needed in ubiquitous and unobtrusive style. The smart space R&D uses large diversity of models, frameworks, and technologies and their integration is the first challenging smart space problem. Another challenge is caused by the necessity to process huge volumes of heterogeneous information perceived by distributed sensors in adaptive, self–organizing, learnable, and efficient style. The paper analyses these challenges and emphasizes an important role of the technology integrating agent and data mining to overcome both these challenges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    AWARE. FP-6 Project web site, http://www.aware-project.net/
  3. 3.
    Cao, L.: Data Mining and Multi-agent Integration (edited). Springer (2009)Google Scholar
  4. 4.
    Cao, L., Gorodetsky, V., Mitkas, P.A.: Agent Mining: The Synergy of Agents and Data Mining. IEEE Intelligent Systems 24(3), 64–72 (2009)CrossRefGoogle Scholar
  5. 5.
    Cao, L., Weiss, G., Yu, P.S.: A Brief Introduction to Agent Mining. Journal of Autonomous Agents and Multi-Agent Systems 25, 419–424 (2012)CrossRefGoogle Scholar
  6. 6.
    CobiS. FP-6 Project web site, http://www.cobis-online.de
  7. 7.
    Cook, D.J., Youngblood, G., Jain, G.: Algorithms for Smart Spaces. In: The Engineering Handbook of Smart Technology for Aging, Disability and CityplaceIndependence. John Wiley & Sons, Inc. (2008)Google Scholar
  8. 8.
    Gorodetskiy, V., Samoilov, V., Serebryakov, S.: Ontology–based Context–dependent Personalization Technology. In: International Workshop “Web Personalization and Recommender Systems” at IEEE/ACM WI/IAT 2010 (2010)Google Scholar
  9. 9.
    Gorodetsky, V., Karsaev, O., Samoylov, V., Serebryakov, S.: P2P Agent Platform: Implementation and Testing. In: Joseph, S.R.H., Despotovic, Z., Moro, G., Bergamaschi, S. (eds.) AP2PC 2007. LNCS, vol. 5319, pp. 41–54. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gorodetsky, V., Karsaev, O., Samoylov, V., Serebryakov, S.: Interaction of Agents and Data Mining in Ubiquitous Environment. In: IAT-ADMI 2008, pp. 9–12 (2008)Google Scholar
  11. 11.
    Gorodetsky, V., Karsaev, O., Samoylov, V., Serebryakov, S.: P2P Agent Platform: Implementation and Testing. In: Joseph, S.R.H., Despotovic, Z., Moro, G., Bergamaschi, S. (eds.) AP2PC 2007. LNCS, vol. 5319, pp. 41–54. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Hydra. FP-6 Project web site, http://www.hydra.eu.com/
  13. 13.
    IBM Language Resource Ware, http://www.lphaworks.ibm.com/tech/lrw
  14. 14.
    IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks, http://www.alphaworks.ibm.com/tech/galaxy
  15. 15.
    MORE. FP-6 Project web site, http://www.ist-more.org
  16. 16.
    Runes. FP-6 Project web site, http://www.ist-runes.org
  17. 17.
    Sense. FP-6 Project web site, http://www.sense-ist.org
  18. 18.
    SMEPP. FP-6 Project web site, http://www.smepp.org
  19. 19.
    SOCRADES. FP-6 Project web site, http://www.socrades.eu
  20. 20.
    Text Analytics Tools and Runtime for IBM Language Ware, http://www.alphaworks.ibm.com/tech/lrw
  21. 21.
    Jih, W., Hsu, J.Y., Lee, T., Chen, L.: A Multi-agent Context-aware Service Platform in A Smart Space. Journal of Computers 77(3), 45–60 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir Gorodetsky
    • 1
  1. 1.SPIIRASSt. PetersburgRussia

Personalised recommendations