Advertisement

Following Human Mobility Using Tweets

  • Mahdi Azmandian
  • Karan Singh
  • Ben Gelsey
  • Yu-Han Chang
  • Rajiv Maheswaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7607)

Abstract

The availability of location-based agent data is growing rapidly, enabling new research into the behavior patterns of such agents in space and time. Previously, such analysis was limited to either small experiments with GPS-equipped agents, or proprietary datasets of human cell phone users that cannot be disseminated across the academic community for followup studies. In this paper, we study the movement patterns of Twitter users in London, Los Angeles, and Tokyo. We cluster these agents by their movement patterns across space and time. We also show that it is possible to infer part of the underlying transportation net- work from Tweets alone, and uncover interesting differences between the behaviors exhibited by users across these three cities.

Keywords

Human Mobility Twitter User Broad Geographic Area Move Object Database Cell Phone User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, L., Gorodetsky, V., Mitkas, P.: Agent mining: The synergy of agents and data mining. IEEE Intelligent Systems 24(3), 64–72 (2009)CrossRefGoogle Scholar
  2. 2.
    Cao, L.: Data mining and multi-agent integration. Springer, Dordrecht (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: An empirical study of geographic user activity patterns in foursquare. In: Proc. of the 5th Int’l AAAI Conference on Weblogs and Social Media, pp. 570–573 (2011)Google Scholar
  4. 4.
    Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Azevedo, T.S., Bezerra, R.L., Campos, C.A.V., de Moraes, L.F.M.: An analysis of human mobility using real traces. In: Proceedings of the 2009 IEEE Conference on Wireless Communications & Networking Conference, WCNC 2009, pp. 2390–2395. IEEE Press, Piscataway (2009)Google Scholar
  6. 6.
    Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.L.: Uncovering individual and collective human dynamics from mobile phone records. Math. Theor. 41, 224015 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the, ACM Symposium on Applied Computing, SAC 2008, 863–868. ACM, New York (2008)Google Scholar
  8. 8.
    Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 900–911. IEEE Computer Society, Washington, DC (2011)Google Scholar
  9. 9.
    Masciari, E.: A Framework for Trajectory Clustering. In: Trigoni, N., Markham, A., Nawaz, S. (eds.) GSN 2009. LNCS, vol. 5659, pp. 102–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-temporal data. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2009, pp. 286–295. ACM, New York (2009)Google Scholar
  11. 11.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311–331 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Sevtsuk, A., Ratti, C.: Does urban mobility have a daily routine? learning from the aggregate data of mobile networks. Journal of Urban Technology 17(1), 41–60 (2010)CrossRefGoogle Scholar
  13. 13.
    Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.J., Vespignani, A.: Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007)Google Scholar
  14. 14.
    Li, Z., Ji, M., Lee, J.G., Tang, L.A., Yu, Y., Han, J., Kays, R.: Movemine: mining moving object databases (2010)Google Scholar
  15. 15.
    Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)CrossRefGoogle Scholar
  16. 16.
    Vasiliev, I.R.: Mapping Time. Cartographica 34(2) (1997)Google Scholar
  17. 17.
    Kapler, T., Wright, W.: Geo time information visualization. Information Visualization 4(2), 136–146 (2005)CrossRefGoogle Scholar
  18. 18.
    Gennady, A., Natalia, A.: A general framework for using aggregation in visual exploration of movement data. Cartographic Journal 47(1), 22–40 (2010)Google Scholar
  19. 19.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19, 639–668 (2005)CrossRefGoogle Scholar
  20. 20.
    Skupin, A., Hagelman, R.: Visualizing demographic trajectories with self-organizing maps. Geoinformatica 9(2), 159–179 (2005)CrossRefGoogle Scholar
  21. 21.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter, pp. 1–6. ACM, New York (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mahdi Azmandian
    • 1
  • Karan Singh
    • 1
  • Ben Gelsey
    • 1
  • Yu-Han Chang
    • 1
  • Rajiv Maheswaran
    • 1
  1. 1.Information Sciences InstituteUniversity of Southern CaliforniaMarina del ReyUSA

Personalised recommendations