Skip to main content

From Discrete to Continuous Motion Planning

  • Conference paper
Algorithmic Foundations of Robotics X

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

In this paper, we demonstrate an equivalence between a large class of discrete motion planning problems, and piano mover’s problems, which we refer to as ”continuous motion planning problems”. We first prove that under some assumptions, discrete motion planning in d dimensions can be transformed into continuous motion planning in 2d + 1 dimensions. Then we prove a more specific, similar equivalence for which the number of dimensions of the configuration space does not necessarily have to be increased.We study two simple cases where this theorem applies, and show that it can lead to original and efficient motion planning algorithms, which could probably be applied to a wide range of multi-contact planning problems.We apply this equivalence to a simulation of legged locomotion planning for a hexapod robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alami, R., Laumond, J.-P., Siméon, T.: Two manipulation planning algorithms. In: 1st Workshop on the Algorithmic Foundations of Robotics, WAFR 1994 (1994)

    Google Scholar 

  2. Bouyarmane, K., Kheddar, A.: Multi-contact stances planning for multiple agents. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2011), pp. 5246–5253 (2011)

    Google Scholar 

  3. Bullo, F., Leonard, N.E., Lewis, A.D.: Controllability and motion algorithms for underactuated lagrangian systems on lie groups. IEEE Transactions on Automatic Control 45(8), 1437–1454 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J.J., Hodgins, J., Kanade, T.: Footstep planning for the honda asimo humanoid. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2005), pp. 631–636 (2005)

    Google Scholar 

  5. Dalibard, S., El Khoury, A., Lamiraux, F., Taix, M., Laumond, J.-P.: Small-space controllability of a walking humanoid robot. In: IEEE/RAS Int. Conf. on Humanoid Robots, Humanoids 2011 (2011)

    Google Scholar 

  6. Ferré, E., Laumond, J.-P.: An iterative diffusion algorithm for part disassembly. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2004 (2004)

    Google Scholar 

  7. Geraerts, R., Overmars, M.H.: Creating high-quality paths for motion planning. I. J. Robotic Res. 26, 845–863 (2007)

    Article  Google Scholar 

  8. Hauser, K., Bretl, T., Latombe, J.-C., Wilcox, B.: Motion Planning for a Six-Legged Lunar Robot. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algorithmic Foundations of Robotics VII. STAR, vol. 47, pp. 301–316. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Hauser, K., Latombe, J.-C.: Multi-modal motion planning in non-expansive spaces. I. J. Robotic Res. 29(7), 897–915 (2010)

    Article  Google Scholar 

  10. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Learning, planning, and control for quadruped locomotion over challenging terrain. I. J. Robotic Res. 30(2) (2011)

    Google Scholar 

  11. Kanoun, O., Yoshida, E., Laumond, J.-P.: An optimization formulation for footsteps planning. In: IEEE/RAS Int. Conf. on Humanoid Robots, Humanoids 2009 (2009)

    Google Scholar 

  12. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. In: Robotics Science and Systems VI (2010)

    Google Scholar 

  13. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. on Robotics and Automation 12, 566–580 (1996)

    Article  Google Scholar 

  14. Kuffner, J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2000), pp. 995–1001 (2000)

    Google Scholar 

  15. Kuffner, J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Footstep planning among obstacles for biped robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2001), pp. 500–505 (2001)

    Google Scholar 

  16. Lafferriere, G., Sussmann, H.J.: Motion planning for controllable systems without drift. In: IEEE Int. Conf. on Robotics and Automation (ICRA 1991), pp. 1148–1153 (1991)

    Google Scholar 

  17. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: 4th Workshop on the Algorithmic Foundations of Robotics (WAFR 2000), pp. 293–308 (2000)

    Google Scholar 

  18. The Open Motion Planning Library (2010), http://ompl.kavrakilab.org

  19. Pan, J., Lauterbach, C., Manocha, D.: g-Planner: Real-time motion planning and global navigation using GPUs. In: 24th AAAI Conf. on Artificial Intelligence (2010)

    Google Scholar 

  20. Pan, J., Liangjun, Z., Manocha, D.: Collision-free and curvature-continuous path smoothing in cluttered environments. In: Robotics: Science and Systems, RSS 2011 (2011)

    Google Scholar 

  21. Perrin, N., Stasse, O., Lamiraux, F., Kim, Y.J., Manocha, D.: Real-time footstep planning for humanoid robots among 3d obstacles using a hybrid bounding box. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2012 (2012)

    Google Scholar 

  22. Perrin, N., Stasse, O., Lamiraux, F., Yoshida, E.: Weakly collision-free paths for continuous humanoid footstep planning. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2011), pp. 4408–4413 (2011)

    Google Scholar 

  23. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc. (1983)

    Google Scholar 

  24. Zucker, M., Andrew, J., Christopher, B., Atkeson, G., Kuffner, J.J.: An optimization approach to rough terrain locomotion. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perrin, N. (2013). From Discrete to Continuous Motion Planning. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics