Skip to main content

D-xylose reductase 1.1.1.307

  • Chapter
Book cover Class 1 Oxidoreductases

Part of the book series: Springer Handbook of Enzymes ((HDBKENZYMES))

Nomenclature

EC number

 1.1.1.307

Systematic name

 xylitol:NAD(P)+ oxidoreductase

Recommended name

 D-xylose reductase

Synonyms

 CbXR <4> [27]

 CtXR <13,19,20> [5,8,10]

 d-xylose reductase <3> [4]

 d-xylose reductase 1 <6> [21]

 d-xylose reductase 2 <6> [21]

 d-xylose reductase 3 <6> [21]

 NAD(P)H-dependent xylose reductase <11,13> [9,15]

 PsXR <11> [24]

 Texr <22> [18]

 XR1 <6> [21]

 XR2 <6> [21]

 XR3 <6> [21]

 XYL1 <20,23> (<20> gene name [5]) [5,6]

 XylR <19> [13]

 XyrA <21> [26]

 dsXR <14> (<14> Candida intermedia produces two isoforms of xylose reductase: one is NADPH-dependent (monospecific xylose reductase, msXR), and another prefers NADH about 4fold over NADPH (dual specific xylose reductase, dsXR) [17]) [17]

 msXR <14> (<14> Candida intermedia produces two isoforms of xylose reductase: one is NADPH-dependent (monospecific xylose reductase, msXR), and another prefers NADH about 4fold over NADPH (dual specific xylose reductase, dsXR) [17]) [17]

xylose reductase <4,5,13> [15,19,22,25,27]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neuhauser, W.; Haltrich, D.; Kulbe, K.D.; Nidetzky, B.: NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Biochem. J., 326, 683-692 (1997)

    PubMed  CAS  Google Scholar 

  2. Yablochkova, E.N.; Bolotnikova, O.I.; Mikhailova, N.P.; Nemova, N.N.; Ginak, A.I.: The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiology, 72, 414-417 (2003)

    Article  CAS  Google Scholar 

  3. Mayerhoff, Z.D.; Roberto, I.C.; Franco, T.T.: Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida mogii. Appl. Microbiol. Biotechnol., 70, 761-767 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. de Groot, M.J.; Prathumpai, W.; Visser, J.; Ruijter, G.J.: Metabolic control analysis of Aspergillus niger l-arabinose catabolism. Biotechnol. Prog., 21, 1610-1616 (2005)

    Article  PubMed  Google Scholar 

  5. Chen, L.C.; Huang, S.C.; Chuankhayan, P.; Chen, C.D.; Huang, Y.C.; Jeyakanthan, J.; Pang, H.F.; Men, L.C.; Chen, Y.C.; Wang, Y.K.; Liu, M.Y.; Wu, T.K.; Chen, C.J.: Purification, crystallization and preliminary X-ray crystal-lographic analysis of xylose reductase from Candida tropicalis. Acta Crystallogr. Sect. F, 65, 419-421 (2009)

    Article  Google Scholar 

  6. Lee, J.K.; Koo, B.S.; Kim, S.Y.: Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol., 69, 6179-6188 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. Woodyer, R.; Simurdiak, M.; van der Donk, W.A.; Zhao, H.: Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl. Environ. Microbiol., 71, 1642-1647 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. Sasaki, M.; Jojima, T.; Inui, M.; Yukawa, H.: Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol., 86, 1057-1066 (2009)

    Article  PubMed  Google Scholar 

  9. Verduyn, C.; van Kleef, R.; Frank, J.; Schreuder, H.; van Dijken, J.P.; Scheffers, W.A.: Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J., 226, 669-677 (1985)

    PubMed  CAS  Google Scholar 

  10. Kratzer, R.; Leitgeb, S.; Wilson, D.K.; Nidetzky, B.: Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Biochem. J., 393, 51-58 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Nidetzky, B.; Klimacek, M.; Mayr, P.: Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Biochemistry, 40, 10371-10381 (2001)

    Article  PubMed  CAS  Google Scholar 

  12. Rawat, U.B.; Rao, M.B.: Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochim. Biophys. Acta, 1293, 222-230 (1996)

    Article  PubMed  Google Scholar 

  13. Häcker, B.; Habenicht, A.; Kiess, M.; Mattes, R.: Xylose utilisation: cloning and characterisation of the xylose reductase from Candida tenuis. Biol. Chem., 380, 1395-1403 (1999)

    Article  PubMed  Google Scholar 

  14. Bengtsson, O.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F.: Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels, 2, 904-912 (2009)

    Article  Google Scholar 

  15. Krahulec, S.; Klimacek, M.; Nidetzky, B.: Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol. J., 4, 684-694 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. Wang, X.; Fang, B.; Luo, J.; Li, W.; Zhang, L.: Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae. Biotechnol. Lett., 29, 1409-1412 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. Nidetzky, B.; Bruggler, K.; Kratzer, R.; Mayr, P.: Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. J. Agric. Food Chem., 51, 7930-7935 (2003)

    Article  PubMed  CAS  Google Scholar 

  18. Fernandes, S.; Tuohy, M.G.; Murray, P.G.: Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity. J. Biosci., 34, 881-890 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. Branco, R.; dos Santos, J.; Sarrouh, B.; Rivaldi, J.; Pessoa Jr., A.; da Silva, S.: Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J. Chem. Technol. Biotechnol., 84, 326-330 (2009)

    Article  CAS  Google Scholar 

  20. de Faria, J.T.; Sampaio, F.C.; Converti, A.; Passos, F.M.; Minim, V.P.; Minim, L.A.: Use of response surface methodology to evaluate the extraction of Debaryomyces hansenii xylose reductase by aqueous two-phase system. J. Chromatogr. B, 877, 3031-3037 (2009)

    Article  Google Scholar 

  21. Yokoyama, S.-I.; Suzuki, T.; Kawai, K.; Horitsu, H.; Takamizawa, K.: Purification, characterization and structure analysis of NADPH-dependent d-xylose reductases from Candida tropicalis. J. Ferment. Bioeng., 79, 217-223 (1995)

    Article  CAS  Google Scholar 

  22. Gurpilhares, D.B.; Hasmann, F.A.; Pessoa, A.; Roberto, I.C.: The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J. Ind. Microbiol. Biotechnol., 36, 87-93 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, F.; Qiao, D.; Xu, H.; Liao, C.; Li, S.; Cao, Y.: Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. J. Microbiol., 47, 351-357 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. Liang, L.; Zhang, J.; Lin, Z.: Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microb. Cell Fact., 6, 0000 (2007)

    Article  Google Scholar 

  25. Petschacher, B.; Nidetzky, B.: Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact., 7, 0000 (2008)

    Article  CAS  Google Scholar 

  26. Hasper, A.A.; Visser, J.; de Graaff, L.H.: The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression. Mol. Microbiol., 36, 193-200 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Khoury, G.A.; Fazelinia, H.; Chin, J.W.; Pantazes, R.J.; Cirino, P.C.; Maranas, C.D.: Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci., 18, 2125-2138 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. Jeong, E.Y.; Sopher, C.; Kim, I.S.; Lee, H.: Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast, 18, 1081-1089 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. Pival, S.L.; Klimacek, M.; Nidetzky, B.: The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site. Biochem. J., 421, 43-49 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. Zeng, Q.K.; Du, H.L.; Wang, J.F.; Wei, D.Q.; Wang, X.N.; Li, Y.X.; Lin, Y.: Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis. Biotechnol. Lett., 31, 1025-1029 (2009)

    Article  PubMed  CAS  Google Scholar 

  31. Krahulec, S.; Petschacher, B.; Wallner, M.; Longus, K.; Klimacek, M.; Nidetzky, B.: Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact., 9, 16 (2010)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schomburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schomburg, D., Schomburg, I. (2013). D-xylose reductase 1.1.1.307. In: Schomburg, D., Schomburg, I. (eds) Class 1 Oxidoreductases. Springer Handbook of Enzymes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36265-1_13

Download citation

Publish with us

Policies and ethics