Skip to main content

Neutrino-Electron Interactions in External Active Media

  • Chapter
  • First Online:
Electroweak Processes in External Active Media

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 252))

  • 588 Accesses

Abstract

An intense electromagnetic field makes possible the processes which are forbidden in a vacuum such as the neutrino decay into the \(W^+\) boson and a charged lepton, \(\nu \rightarrow \ell ^{-} W^{+} \, (\ell = e, \mu , \tau )\) and the production of a lepton pair by neutrino, \(\nu \rightarrow \nu \ell ^{-} \ell ^{+} \). In this chapter, we present in details the technique of calculations of the neutrino-electron processes in external active media. We consider mainly the two processes. The first one, which is possible in an intense external electromagnetic field and in the case of sufficiently high neutrino energy, is the decay \(\nu \rightarrow e^{-} W^{+}\). The second process is the electron–positron pair production by a neutrino \(\nu \rightarrow \nu + e^{-} + e^{+}\). We present the procedure of calculation of the process probability in the case of a strong magnetic field, when an electron and a positron are created in the ground Landau level, and in the crossed field limit. We calculate also the four-vector of the mean values of the neutrino energy and momentum losses due to the process \(\nu \rightarrow \nu + e^- + e^+\), which could be essential in astrophysical applications. The process of the electron–positron pair production by neutrino in a strong magnetic field, if one more component of the external active medium which is dense plasma is taken into account, should be suppressed by the Fermi—Dirac statistical factors. In this chapter, we also consider the electron–positron plasma influence on the process \(\nu \rightarrow \nu + e^- + e^+\), and take into consideration the crossed neutrino-electron processes. We also try to apply the results obtained to the well-known problem of large kick velocities of pulsars born in supernova explosions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general a neutrino can lose and acquire energy and momentum so that we shall subsequently understand “loss” of energy and momentum in the algebraic sense.

  2. 2.

    The cooling of a supernova envelope, the so-called Kelvin–Helmholz stage, is known to last for about 10 s.

References

  1. A.V. Borisov, V.Ch. Zhukovskii, A.V. Kurilin, A.I. Ternov, Yad. Fiz. 41, 743 (1985) [Sov. J. Nucl. Phys. 41, 473 (1985)]

    Google Scholar 

  2. A. Erdas, M. Lissia, Phys. Rev. D 67, 033001 (2003)

    Google Scholar 

  3. A.V. Kuznetsov, N.V. Mikheev, Yad. Fiz. 70, 1299 (2007) [Phys. At. Nucl. 70, 1258 (2007)]

    Google Scholar 

  4. K. Bhattacharya, S. Sahu, Eur. Phys. J. C 62, 481 (2009)

    Google Scholar 

  5. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1965)

    Google Scholar 

  6. E.A. Choban, A.N. Ivanov, Zh. Eksp. Teor. Fiz. 56, 194 (1969) [Sov. Phys. JETP 29, 109 (1969)]

    Google Scholar 

  7. A.V. Borisov, V.Ch. Zhukovskii, B.A. Lysov, Izv. Vyssh. Uchebn. Zaved. Fiz. No. 8, 30 (1983) [Sov. Phys. J. 26, 701 (1983)]

    Google Scholar 

  8. M.Yu. Knizhnikov, A.V. Tatarintsev, Vestn. Mosk. Univ. Fiz. Astron. 25, 26 (1984)

    Google Scholar 

  9. A.V. Borisov, A.I. Ternov, V.Ch. Zhukovsky, Phys. Lett. B 318, 489 (1993)

    Google Scholar 

  10. A.V. Kuznetsov, N.V. Mikheev, Phys. Lett. B 394, 123 (1997)

    Google Scholar 

  11. A.V. Kuznetsov, N.V. Mikheev, Yad. Fiz. 60, 2038 (1997) [Phys. At. Nucl. 60, 1865 (1997)]

    Google Scholar 

  12. A.V. Borisov, N.B. Zamorin, Yad. Fiz. 62, 1647 (1999) [Phys. At. Nucl. 62, 1543 (1999)]

    Google Scholar 

  13. A.V. Kuznetsov, N.V. Mikheev, D.A. Rumyantsev, Mod. Phys. Lett. A 15, 573 (2000)

    Google Scholar 

  14. A.V. Kuznetsov, N.V. Mikheev, D.A. Rumyantsev, Yad. Fiz. 65, 303 (2002) [Phys. At. Nucl. 65, 277 (2002)]

    Google Scholar 

  15. V.V. Skobelev, Zh. Eksp. Teor. Fiz. 108, 3 (1995) [JETP 81, 1 (1995)]

    Google Scholar 

  16. A.V. Kuznetsov, N.V. Mikheev, Electroweak Processes in External Electromagnetic Fields (Springer, New York, 2003)

    Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Course of theoretical physics, vol. 5, Statistical Physics, Part 2 (Nauka, Moscow, 1976; Pergamon, Oxford, 1980)

    Google Scholar 

  18. G.S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1971)]

    Google Scholar 

  19. G.S. Bisnovatyi-Kogan, Stellar Physics 2: Stellar Evolution and Stability (Nauka, Moscow 1989) (Springer, New York, 2001)

    Google Scholar 

  20. R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992)

    Article  ADS  Google Scholar 

  21. P. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  22. C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001)

    Article  ADS  Google Scholar 

  23. V.S. Imshennik, D.K. Nadyozhin, Usp. Fiz. Nauk 156, 561 (1988) [Sov. Phys. Usp. 31, 1040 (1988)]

    Google Scholar 

  24. D.K. Nadyozhin, in: Proceedings of the Baksan International School on Particles and Cosmology, ed. by V.A. Matveev et al. (World Scientific, Singapore, 1992), pp. 153–190

    Google Scholar 

  25. A.V. Kuznetsov, N.V. Mikheev, Mod. Phys. Lett. A 14, 2531 (1999)

    Google Scholar 

  26. A.V. Kuznetsov, N.V. Mikheev, Zh. Eksp. Teor. Fiz. 118, 863 (2000) [JETP 91, 748 (2000)]

    Google Scholar 

  27. S. Yamada, H.-Th. Janka, H. Suzuki, Astron. Astrophys. 344, 533 (1999)

    Google Scholar 

  28. V.G. Bezchastnov, P. Haensel, Phys. Rev. D 54, 3706 (1996)

    Google Scholar 

  29. A.A. Gvozdev, I.S. Ognev, Pis’ma v Zh. Eksp. Teor. Fiz. 69, 337 (1999) [JETP Lett. 69, 365 (1999)]

    Google Scholar 

  30. A.A. Gvozdev, I.S. Ognev, Zh. Eksp. Teor. Fiz. 121, 1219 (2002) [JETP 94, 1043 (2002)]

    Google Scholar 

  31. N.V. Mikheev, E.N. Narynskaya, Mod. Phys. Lett. A 15, 1551 (2000)

    Google Scholar 

  32. N.V. Mikheev, E.N. Narynskaya, Cent. Eur. J. Phys. 1, 145 (2003)

    Article  Google Scholar 

  33. I.S. Shklovskii, Astron. Zh. 46, 715 (1969) [Sov. Astron. 13, 562 (1969)]

    Google Scholar 

  34. J.E. Gunn, J.P. Ostriker, Astrophys. J. 160, 979 (1970)

    Article  ADS  Google Scholar 

  35. A.G. Lyne, D.R. Lorimer, Nature 369, 127 (1994)

    Article  ADS  Google Scholar 

  36. G. Hobbs, D.R. Lorimer, A.G. Lyne, M. Kramer, Mon. Not. R. Astron. Soc. 360, 974 (2005)

    Article  ADS  Google Scholar 

  37. A.A. Deshpande, R. Ramachandran, V. Radhakrishnan, Astron. Astrophys. 351, 195 (1999)

    ADS  Google Scholar 

  38. S. Johnston, G. Hobbs, S. Vigeland et al., Mon. Not. R. Astron. Soc. 364, 1397 (2005)

    Article  ADS  Google Scholar 

  39. C.L. Fryer, Astrophys. J. 601, L175 (2004)

    Article  ADS  Google Scholar 

  40. L. Scheck, K. Kifonidis, H.-Th. Janka, E. Müller, Astron. Astrophys. 457, 963 (2006)

    Google Scholar 

  41. J.R. Gott, J.E. Gunn, J.P. Ostriker, Astrophys. J. 160, L91 (1970)

    Article  ADS  Google Scholar 

  42. E.R. Harrison, E. Tademaru, Astrophys. J. 201, 447 (1975)

    Article  ADS  Google Scholar 

  43. N.N. Chugai, Pis’ma Astron. Zh. 10, 210 (1984) [Sov. Astron. Lett. 10, 87 (1984)]

    Google Scholar 

  44. Yu.M. Loskutov, Pis’ma v Zh. Eksp. Teor. Fiz. 39, 438 (1984) [JETP Lett. 39, 31 (1984)]

    Google Scholar 

  45. Yu.M. Loskutov, Teor. Mat. Fiz. 65, 141 (1985)

    Google Scholar 

  46. O.F. Dorofeev, V.N. Rodionov, I.M. Ternov, Pis’ma v Zh. Eksp. Teor. Fiz. 40, 159 (1984) [JETP Lett. 40, 917 (1984)]

    Google Scholar 

  47. O.F. Dorofeev, V.N. Rodionov, I.M. Ternov, Pis’ma Astron. Zh. 11, 302 (1985) [Sov. Astron. Lett. 11, 123 (1985)]

    Google Scholar 

  48. Yu.P. Pskovsky, O.F. Dorofeev, Nature 340, 701 (1989)

    Google Scholar 

  49. A. Vilenkin, Astrophys. J. 451, 700 (1995)

    Article  ADS  Google Scholar 

  50. D. Lai, Y.-Z. Qian, Astrophys. J. 505, 844 (1998)

    Article  ADS  Google Scholar 

  51. P. Arras, D. Lai, Astrophys. J. 519, 745 (1999)

    Article  ADS  Google Scholar 

  52. P. Arras, D. Lai, Phys. Rev. D 60, 043001 (1999)

    Google Scholar 

  53. G.S. Bisnovatyi-Kogan, S.G. Moiseenko, Astron. Zh. 69, 563 (1992) [Sov. Astron. 36, 285 (1992)]

    Google Scholar 

  54. G.S. Bisnovatyi-Kogan, Astron. Astrophys. Trans. 3, 287 (1993)

    Article  ADS  Google Scholar 

  55. G.S. Bisnovatyi-Kogan, AIP Conf. Proc. 366, 38 (1996)

    Article  ADS  Google Scholar 

  56. A. Kusenko, G. Segrè, Phys. Rev. Lett. 77, 4872 (1996)

    Article  ADS  Google Scholar 

  57. H.-Th. Janka, G.G. Raffelt, Phys. Rev. D 59, 023005 (1998)

    Google Scholar 

  58. E.Kh. Akhmedov, A. Lanza, D.W. Sciama, Phys. Rev. D 56, 6117 (1997)

    Google Scholar 

  59. A. Kusenko, G. Segrè, Phys. Lett. B 396, 197 (1997)

    Google Scholar 

  60. A. Kusenko, Phys. Rep. 481, 1 (2009)

    Article  ADS  Google Scholar 

  61. G.M. Fuller, A. Kusenko, I. Mocioiu, S. Pascoli, Phys. Rev. D 68, 103002 (2003)

    Google Scholar 

  62. C. Kishimoto, Pulsar kicks from active-sterile neutrino transformation in supernovae, arXiv:1101.1304 (2011)

    Google Scholar 

  63. S.G. Moiseenko, G.S. Bisnovatyi-Kogan, N.V. Ardeljan, in: Supernovae: One Millennium After SN1006, 26th Meeting of IAU, Prague, Czech Rep., JD09, No. 33 (2006); astro-ph/0603789

    Google Scholar 

  64. K.A. Postnov, Usp. Fiz. Nauk 169, 545 (1999) [Phys. Usp. 42, 469 (1999)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuznetsov, A., Mikheev, N. (2013). Neutrino-Electron Interactions in External Active Media. In: Electroweak Processes in External Active Media. Springer Tracts in Modern Physics, vol 252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36226-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36226-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36225-5

  • Online ISBN: 978-3-642-36226-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics