Skip to main content

The Arthropod Cuticle

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

What accounts for the beauty and singularity of arthropods is the cuticle that enables them to compete in their small world. What we see is the surface but what does it look like inside? In the past two centuries, starting with the discovery of chitin as a major component of the arthropod cuticle by Odier (1823), a vast number of publications contributed to the understanding of cuticle architecture and composition (reviewed in Locke 2001; Moussian 2010). The arthropod cuticle is a multifunctional coat that defines and stabilises the shape of the body, appendages and internal organs including the hindgut, the foregut and, in insects, the tracheae, preventing dehydration and infection, and protecting against predators of the same scale. As an exoskeleton, additionally, it allows locomotion and flight. Witnessing the ecological success and relevance of arthropods, the cuticle is a highly versatile device facilitating formation of many different body shapes that reflect habitat adaptation, and indeed, arthropods populate a broad range of ecological habitats ranging from oceans to deserts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MS, Wang HB, Iwanaga M, Kawasaki H (2012) Expression of cuticular protein genes, BmorCPG11 and BMWCP5 is differently regulated at the pre-pupal stage in wing discs of Bombyx mori. Comp Biochem Physiol B 162:44–50

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (1964) The cross-links in resilin identified as dityrosine and trityrosine. Biochim Biophys Acta 93:213–215

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (1966) Covalent cross-links in a structural protein, resilin. Acta Physiol Scand Suppl 263:1–81

    Google Scholar 

  • Andersen SO (2010a) Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40:166–178

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (2010b) Studies on resilin-like gene products in insects. Insect Biochem Mol Biol 40:541–551

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (2011) Are structural proteins in insect cuticles dominated by intrinsically disordered regions? Insect Biochem Mol Biol 41:620–627

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (2012) Cuticular sclerotization and tanning. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Elsevier, Amsterdam, pp 167–192

    Chapter  Google Scholar 

  • Andersen SO, Hojrup P, Roepstorff P (1995) Insect cuticular proteins. Insect Biochem Mol Biol 25:153–176

    Article  PubMed  CAS  Google Scholar 

  • Anh NT, Nishitani M, Harada S, Yamaguchi M, Kamei K (2011) Essential role of Duox in stabilization of Drosophila wing. J Biol Chem 286:33244–33251

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005a) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102:11337–11342

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW (2005b) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453–463

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:959–962

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Dixit R, Begum K, Park Y, Specht CA, Merzendorfer H, Kramer KJ, Muthukrishnan S, Beeman RW (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39:355–365

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Dittmer NT, Tomoyasu Y, Kramer KJ, Muthukrishnan S, Beeman RW, Kanost MR (2010) Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. Insect Biochem Mol Biol 40:259–266

    Article  PubMed  CAS  Google Scholar 

  • Araujo SJ, Cela C, Llimargas M (2007) Tramtrack regulates different morphogenetic events during Drosophila tracheal development. Development 134:3665–3676

    Article  PubMed  CAS  Google Scholar 

  • Aravind L (2001) DOMON: an ancient extracellular domain in dopamine beta-monooxygenase and other proteins. Trends Biochem Sci 26:524–526

    Article  PubMed  CAS  Google Scholar 

  • Ardell DH, Andersen SO (2001) Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol 31:965–970

    Article  PubMed  CAS  Google Scholar 

  • Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D (2008) Polarity complex proteins. Biochim Biophys Acta 1778:614–630

    Article  PubMed  CAS  Google Scholar 

  • Bartles JR (2000) Parallel actin bundles and their multiple actin-bundling proteins. Curr Opin Cell Biol 12:72–78

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (2006) Chitosomes: Past, present and future. FEMS Yeast Res 6:957–965

    Article  PubMed  CAS  Google Scholar 

  • Bauer R, Loer B, Ostrowski K, Martini J, Weimbs A, Lechner H, Hoch M (2005) Intercellular communication: the Drosophila innexin multiprotein family of gap junction proteins. Chem Biol 12:515–526

    Article  PubMed  CAS  Google Scholar 

  • Bennet-Clark H (2007) The first description of resilin. J Exp Biol 210:3879–3881

    Article  PubMed  Google Scholar 

  • Bouligand Y (1965) Sur une architecture torsadée répandue dans de nombreuses cuticules d’Arthropodes. C R Acad Sci (Paris) D 261:4864–4867

    Google Scholar 

  • Burrows M (2009) A single muscle moves a crustacean limb joint rhythmically by acting against a spring containing resilin. BMC Biol 7:27

    Article  PubMed  CAS  Google Scholar 

  • Butenandt A, Beckmann R, Hecker E (1961a) Über den Sexuallockstoff des Seidenspinners. I. Der biologische Test und die Isolierung des reinen Sexual-Lockstoffes Bombykol. Hoppe Seylers Z Physiol Chem 324:71–83

    Article  PubMed  CAS  Google Scholar 

  • Butenandt A, Beckmann R, Stamm D (1961b) Über den SexuaIIockstoff des Seidenspinners. II. Konstitution und Konfiguration des Bombykols. Hoppe Seylers Z Physiol Chem 324:84–87

    Article  PubMed  CAS  Google Scholar 

  • Chanut-Delalande H, Fernandes I, Roch F, Payre F, Plaza S (2006) Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol 4(9):e290. doi:10.1371/journal.pbio.0040290

    Article  PubMed  CAS  Google Scholar 

  • Charles JP (2010) The regulation of expression of insect cuticle protein genes. Insect Biochem Mol Biol 40:205–213

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari SS, Arakane Y, Specht CA, Moussian B, Boyle DL, Park Y, Kramer KJ, Beeman RW, Muthukrishnan S (2011) Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc Natl Acad Sci USA 108:17028–17033

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari SS, Arakane Y, Specht CA, Moussian B, Kramer KJ, Muthukrishnan S, Beeman RW (2013) Retroactive Maintains Cuticle Integrity by Promoting the Trafficking of Knickkopf into the Procuticle of Tribolium castaneum. PLoS Genet 9(1):e1003268

    Google Scholar 

  • Cheng L, Wang L, Karlsson AM (2009) Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica. J Mater Res 24:3253–3267

    Article  CAS  Google Scholar 

  • Chihara CJ, Silvert DJ, Fristrom JW (1982) The cuticle proteins of Drosophila melanogaster: stage specificity. Dev Biol 89:379–388

    Article  PubMed  CAS  Google Scholar 

  • Cornman RS (2010) The distribution of GYR- and YLP-like motifs in Drosophila suggests a general role in cuticle assembly and other protein–protein interactions. PLoS ONE 5(9):e12536. doi:10.1371/journal.pone.0012536

    Article  PubMed  CAS  Google Scholar 

  • Cui HY, Lestradet M, Bruey-Sedano N, Charles JP, Riddiford LM (2009) Elucidation of the regulation of an adult cuticle gene Acp65A by the transcription factor broad. Insect Mol Biol 18:421–429

    Article  PubMed  CAS  Google Scholar 

  • Das A, Base C, Manna D, Cho W, Dubreuil RR (2008) Unexpected complexity in the mechanisms that target assembly of the spectrin cytoskeleton. J Biol Chem 283:12643–12653

    Article  PubMed  CAS  Google Scholar 

  • Devine WP, Lubarsky B, Shaw K, Luschnig S, Messina L, Krasnow MA (2005) Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc Natl Acad Sci USA 102:17014–17019

    Article  PubMed  CAS  Google Scholar 

  • Doctor J, Fristrom D, Fristrom JW (1985) The pupal cuticle of Drosophila: biphasic synthesis of pupal cuticle proteins in vivo and in vitro in response to 20-hydroxyecdysone. J Cell Biol 101:189–200

    Article  PubMed  CAS  Google Scholar 

  • Donko A, Peterfi Z, Sum A, Leto T, Geiszt M (2005) Dual oxidases. Phil Trans R Soc B 360:2301–2308

    Article  PubMed  CAS  Google Scholar 

  • Everaerts C, Farine JP, Cobb M, Ferveur JF (2010) Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5(3):e9607. doi:10.1371/journal.pone.0009607

    Article  PubMed  CAS  Google Scholar 

  • Fernandes I, Chanut-Delalande H, Ferrer P, Latapie Y, Waltzer L, Affolter M, Payre F, Plaza S (2010) Zona pellucida domain proteins remodel the apical compartment for localized cell shape changes. Dev Cell 18:64–76

    Article  PubMed  CAS  Google Scholar 

  • Fristrom D, Doctor J, Fristrom JW (1986) Procuticle proteins and chitin-like material in the inner epicuticle of the Drosophila pupal cuticle. Tissue Cell 18:531–543

    Article  PubMed  CAS  Google Scholar 

  • Fusco G, Brena C, Minelli A (2000) Cellular processes in the growth of lithobiomorph centipedes (Chilopoda: Lithobiomorpha). A cuticular view. Zool Anz 239:91–102

    Google Scholar 

  • Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H (2008a) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Futahashi R, Sato J, Meng Y, Okamoto S, Daimon T, Yamamoto K, Suetsugu Y, Narukawa J, Takahashi H, Banno Y, Katsuma S, Shimada T, Mita K, Fujiwara H (2008b) yellow and ebony are the responsible genes for the larval color mutants of the silkworm Bombyx mori. Genetics 180:1995–2005

    Article  PubMed  CAS  Google Scholar 

  • Gangishetti U, Veerkamp J, Bezdan D, Schwarz H, Lohmann I, Moussian B (2012) Grainyhead and ecdysone cooperate during differentiation of the Drosophila skin. Insect Mol Biol 21:283–295

    Article  PubMed  CAS  Google Scholar 

  • Gibbs A (1998) Water-proofing properties of cuticular lipids. Amer Zool 38:471–482

    CAS  Google Scholar 

  • Gibbs AG (2011) Thermodynamics of cuticular transpiration. J Insect Physiol 57:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Development 138:1877–1892

    Article  PubMed  CAS  Google Scholar 

  • Guan X, Middlebrooks BW, Alexander S, Wasserman SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci USA 103:16794–16799

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn M, Weihrauch D, Towle DW, Ziegler A (2003) Molecular characterisation of the smooth endoplasmic reticulum Ca(2+)-ATPase of Porcellio scaber and its expression in sternal epithelia during the moult cycle. J Exp Biol 206:2167–2175

    Article  PubMed  CAS  Google Scholar 

  • Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J (2002) Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J 368:333–340

    Article  PubMed  CAS  Google Scholar 

  • Harding CR (2004) The stratum corneum: structure and function in health and disease. Dermatol Ther 17(Suppl 1):6–15

    Article  PubMed  Google Scholar 

  • Havemann J, Muller U, Berger J, Schwarz H, Gerberding M, Moussian B (2008) Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell Tissue Res 332:359–370

    Article  PubMed  Google Scholar 

  • Hegan PS, Mermall V, Tilney LG, Mooseker MS (2007) Roles for Drosophila melanogaster myosin IB in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila. Mol Biol Cell 18:4625–4636

    Article  PubMed  CAS  Google Scholar 

  • Hijazi A, Masson W, Auge B, Waltzer L, Haenlin M, Roch F (2009) Boudin is required for septate junction organisation in Drosophila and codes for a diffusible protein of the Ly6 superfamily. Development 136:2199–2209

    Article  PubMed  CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Anantharaman V, Aravind L (2007) The DOMON domains are involved in heme and sugar recognition. Bioinformatics 23:2660–2664

    Article  PubMed  CAS  Google Scholar 

  • Jensen JM, Proksch E (2009) The skin’s barrier. G Ital Dermatol Venereol 144:689–700

    PubMed  CAS  Google Scholar 

  • Kamenz C, Dunlop JA, Scholtz G (2005) Characters in the book lungs of Scorpiones (Chelicerata, Arachnida) revealed by scanning electron microscopy. Zoomorphology 124:101–109

    Article  Google Scholar 

  • Kerman BE, Cheshire AM, Myat MM, Andrew DJ (2008) Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev Biol 320:278–288

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y (2007) Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat Cell Biol 9:660–665

    Article  PubMed  CAS  Google Scholar 

  • Kozlova T, Lam G, Thummel CS (2009) Drosophila DHR38 nuclear receptor is required for adult cuticle integrity at eclosion. Dev Dyn 238:701–707

    Article  PubMed  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Maleszka R (2007) Novel cuticular proteins revealed by the honey bee genome. Insect Biochem Mol Biol 37:128–134

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C (2010) A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327:1644–1648

    Article  PubMed  CAS  Google Scholar 

  • Laprise P, Lau KM, Harris KP, Silva-Gagliardi NF, Paul SM, Beronja S, Beitel GJ, McGlade CJ, Tepass U (2009) Yurt, Coracle, Neurexin IV and the Na(+), K(+)-ATPase form a novel group of epithelial polarity proteins. Nature 459:1141–1145

    Article  PubMed  CAS  Google Scholar 

  • Laprise P, Paul SM, Boulanger J, Robbins RM, Beitel GJ, Tepass U (2010) Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol 20:55–61

    Article  PubMed  CAS  Google Scholar 

  • Lehane MJ, Billingsley PF (1996) Biology of the insect midgut. Chapman & Hall, London

    Book  Google Scholar 

  • Lewis JGE (1981) The biology of centipedes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lindgren M, Riazi R, Lesch C, Wilhelmsson C, Theopold U, Dushay MS (2008) Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 54:586–592

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1961) Pore canals and related structures in insect cuticle. J Biophys Biochem Cytol 10:589–618

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1966) The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J Morphol 118:461–494

    Article  PubMed  CAS  Google Scholar 

  • Locke M (2001) The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J Insect Physiol 47:495–507

    Article  PubMed  CAS  Google Scholar 

  • Locke M (2003) Surface membranes, Golgi complexes, and vacuolar systems. Annu Rev Entomol 48:1–27

    Article  PubMed  CAS  Google Scholar 

  • Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194

    Article  PubMed  CAS  Google Scholar 

  • Lyons RE, Nairn KM, Huson MG, Kim M, Dumsday G, Elvin CM (2009) Comparisons of recombinant resilin-like proteins: repetitive domains are sufficient to confer resilin-like properties. Biomacromolecules 10:3009–3014

    Article  PubMed  CAS  Google Scholar 

  • Lyons RE, Wong DC, Kim M, Lekieffre N, Huson MG, Vuocolo T, Merritt DJ, Nairn KM, Dudek DM, Colgrave ML, Elvin CM (2011) Molecular and functional characterisation of resilin across three insect orders. Insect Biochem Mol Biol 41:881–890

    Article  PubMed  CAS  Google Scholar 

  • Madison KC (2003) Barrier function of the skin: La raison d’etre of the epidermis. J Invest Dermatol 121:231–241

    Article  PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (2003) Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids 25:233–247

    Article  PubMed  CAS  Google Scholar 

  • Martinek N, Shahab J, Saathoff M, Ringuette M (2008) Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J Cell Sci 121:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S (2010) Molecular mechanisms underlying sex pheromone production in moths. Biosci Biotechnol Biochem 74:223–231

    Article  PubMed  CAS  Google Scholar 

  • Matusek T, Djiane A, Jankovics F, Brunner D, Mlodzik M, Mihaly J (2006) The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133:957–966

    Article  PubMed  CAS  Google Scholar 

  • Meissner D, Odman-Naresh J, Vogelpohl I, Merzendorfer H (2010) A novel role of the yeast CaaX protease Ste24 in chitin synthesis. Mol Biol Cell 21:2425–2433

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer H (2006) Insect chitin synthases: a review. J Comp Physiol B 176:1–15

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90:759–769

    Article  PubMed  CAS  Google Scholar 

  • Michels J, Gorb SN (2012) Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J Microsc 245:1–16

    Article  PubMed  CAS  Google Scholar 

  • Moussian B (2008) The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B 149:215–226

    Article  PubMed  CAS  Google Scholar 

  • Moussian B (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40:363–375

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Schwarz H, Bartoszewski S, Nusslein-Volhard C (2005a) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264:117–130

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Soding J, Schwarz H, Nusslein-Volhard C (2005b) Retroactive, a membrane-anchored extracellular protein related to vertebrate snake neurotoxin-like proteins, is required for cuticle organization in the larva of Drosophila melanogaster. Dev Dyn 233:1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Seifarth C, Muller U, Berger J, Schwarz H (2006a) Cuticle differentiation during Drosophila embryogenesis. Arthropod Struct Dev 35:137–152

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Tang E, Tonning A, Helms S, Schwarz H, Nusslein-Volhard C, Uv AE (2006b) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–171

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Veerkamp J, Muller U, Schwarz H (2007) Assembly of the Drosophila larval exoskeleton requires controlled secretion and shaping of the apical plasma membrane. Matrix Biol 26:337–347

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj R, Adler PN (2012) Dusky-like functions as a Rab11 effector for the deposition of cuticle during Drosophila bristle development. Development 139:906–916

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Charlet LD (2003) Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp Biochem Physiol B 135:273–284

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Tissot M, Nelson LJ, Fatland CL, Gordon DM (2001) Novel wax esters and hydrocarbons in the cuticular surface lipids of the red harvester ant, Pogonomyrmex barbatus. Comp Biochem Physiol B 128:575–595

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Olson DL, Fatland CL (2002) Cuticular hydrocarbons of the flea beetles, Aphthona lacertosa and Aphthona nigriscutis, biocontrol agents for leafy spurge (Euphorbia esula). Comp Biochem Physiol B 133:337–350

    Article  PubMed  Google Scholar 

  • Nelson DR, Adams TS, Fatland CL (2003) Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comp Biochem Physiol B: Biochem Mol Biol 134:447–466

    Article  CAS  Google Scholar 

  • Nelson DR, Hines H, Stay B (2004) Methyl-branched hydrocarbons, major components of the waxy material coating the embryos of the viviparous cockroach Diploptera punctata. Comp Biochem Physiol B 138:265–276

    Article  PubMed  CAS  Google Scholar 

  • Neville AC (1965a) Chitin lamellogenesis in locust cuticle. Q J Microsc Sci 106:269–286

    PubMed  CAS  Google Scholar 

  • Neville AC (1965b) Circadian organization of chitin in some insect skeletons. Q J Microsc Sci 106:315–325

    Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin

    Book  Google Scholar 

  • Neville AC, Luke BM (1969a) A two-system model for chitin-protein complexes in insect cuticles. Tissue Cell 1:689–707

    Article  PubMed  CAS  Google Scholar 

  • Neville AC, Luke BM (1969b) Molecular architecture of adult locust cuticle at the electron microscope level. Tissue Cell 1:355–366

    Article  PubMed  CAS  Google Scholar 

  • Neville AC, Parry DA, Woodhead-Galloway J (1976) The chitin crystallite in arthropod cuticle. J Cell Sci 21:73–82

    PubMed  CAS  Google Scholar 

  • Nilton A, Oshima K, Zare F, Byri S, Nannmark U, Nyberg KG, Fehon RG, Uv AE (2010) Crooked, coiled and crimpled are three Ly6-like proteins required for proper localization of septate junction components. Development 137:2427–2437

    Article  PubMed  CAS  Google Scholar 

  • Niu BL, Shen WF, Liu Y, Weng HB, He LH, Mu JJ, Wu ZL, Jiang P, Tao YZ, Meng ZQ (2008) Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus. Insect Mol Biol 17:303–312

    Article  PubMed  CAS  Google Scholar 

  • Norum M, Tang E, Chavoshi T, Schwarz H, Linke D, Uv A, Moussian B (2010) Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS ONE 5(5):e10802

    Article  PubMed  CAS  Google Scholar 

  • Odier A (1823) Mémoires sur la composition chimique des parties cornées des insectes. Mém Soc Hist Nat Paris 1:29–42

    Google Scholar 

  • Oshima K, Fehon RG (2011) Analysis of protein dynamics within the septate junction reveals a highly stable core protein complex that does not include the basolateral polarity protein Discs large. J Cell Sci 124:2861–2871

    Article  PubMed  CAS  Google Scholar 

  • Parra-Peralbo E, Culi J (2011) Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism. PLoS Genet 7(2):e1001297

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Nelson DR, Gibbs AG (2001) Chemical and physical analyses of wax ester properties. J Insect Sci 1:4

    PubMed  CAS  Google Scholar 

  • Pryor MG (1940) On the hardening of cuticle of insects. Proc R Soc B 128:393–407

    Article  CAS  Google Scholar 

  • Pryor MG, Russell PB, Todd AR (1946) Protocatechuic acid, the substance responsible for the hardening of the cockroach ootheca. Biochem J 40:627–628

    CAS  Google Scholar 

  • Pryor MG, Russell PB, Todd AR (1947) Phenolic substances concerned in hardening the insect cuticle. Nature 159:399

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, Podoler I, Shoseyov O, Kaplan DL (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10:3227–3234

    Article  PubMed  CAS  Google Scholar 

  • Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H-G, Yi S-B, Servos G, Hartwig HG (2005) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283:1–7

    Article  CAS  Google Scholar 

  • Rebers JE, Willis JH (2001) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem Mol Biol 31:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, Valle D (2008) Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev Biol 8:82

    Article  PubMed  CAS  Google Scholar 

  • Riedel F, Vorkel D, Eaton S (2011) Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. Development 138:149–158

    Article  PubMed  CAS  Google Scholar 

  • Rotstein B, Molnar D, Adryan B, Llimargas M (2012) Tramtrack is genetically upstream of genes controlling tracheal tube size in Drosophila. PLoS ONE 6(12):e28985

    Article  CAS  Google Scholar 

  • Ruaud AF, Lam G, Thummel CS (2010) The Drosophila nuclear receptors DHR3 and beta FTZ-F1 control overlapping developmental responses in late embryos. Development 137:123–131

    Article  PubMed  CAS  Google Scholar 

  • Ruaud AF, Lam G, Thummel CS (2011) The Drosophila NR4A nuclear receptor DHR38 regulates carbohydrate metabolism and gycogen storage. Mol Endocrinol 25:83–91

    Article  PubMed  CAS  Google Scholar 

  • Sass M, Kiss A, Locke M (1993) Classes of integument peptides. Insect Biochem Mol Biol 23:845–857

    Article  CAS  Google Scholar 

  • Sass M, Kiss A, Locke M (1994) Integument and hemocyte peptides. J Insect Physiol 40:407–421

    Article  CAS  Google Scholar 

  • Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology (Jena) 109:2–13

    Article  Google Scholar 

  • Schulte J, Charish K, Que J, Ravn S, MacKinnon C, Auld VJ (2006) Gliotactin and Discs large form a protein complex at the tricellular junction of polarized epithelial cells in Drosophila. J Cell Sci 119:4391–4401

    Article  PubMed  CAS  Google Scholar 

  • Shaik KS, Pabst M, Schwarz H, Altmann F, Moussian B (2011) The Alg5 ortholog Wollknauel is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology 21:743–756

    Article  PubMed  CAS  Google Scholar 

  • Shaik KS, Meyer F, Vazquez AV, Flotenmeyer M, Cerdan ME, Moussian B (2012) delta-Aminolevulinate synthase is required for apical transcellular barrier formation in the skin of the Drosophila larva. Eur J Cell Biol 91:204–215

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Ariki S, Shinzawa N, Miyaji R, Suyama H, Sako M, Inomata N, Koshiba T, Kanuka H, Kawabata S (2010) Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila. PLoS ONE 5(10):e13477. doi:10.1371/journal.pone.0013477

    Article  PubMed  CAS  Google Scholar 

  • Silvert DJ, Doctor J, Quesada L, Fristrom JW (1984) Pupal and larval cuticle proteins of Drosophila melanogaster. Biochemistry 23:5767–5774

    Article  PubMed  CAS  Google Scholar 

  • Snyder M, Hunkapiller M, Yuen D, Silvert D, Fristrom J, Davidson N (1982) Cuticle protein genes of Drosophila: Structure, organization and evolution of four clustered genes. Cell 29:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Suderman RJ, Dittmer NT, Kanost MR, Kramer KJ (2006) Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase–catalyzed oxidative conjugation with catechols. Insect Biochem Mol Biol 36:353–365

    Article  PubMed  CAS  Google Scholar 

  • Suderman RJ, Dittmer NT, Kramer KJ, Kanost MR (2010) Model reactions for insect cuticle sclerotization: participation of amino groups in the cross-linking of Manduca sexta cuticle protein MsCP36. Insect Biochem Mol Biol 40:252–258

    Article  PubMed  CAS  Google Scholar 

  • Sugumaran M (2009) Complexities of cuticular pigmentation in insects. Pigment Cell Melanoma Res 22:523–525

    Article  PubMed  Google Scholar 

  • Tang L, Liang J, Zhan Z, Xiang Z, He N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem Mol Biol 40:228–234

    Article  PubMed  CAS  Google Scholar 

  • Tepass U, Theres C, Knust E (1990) Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61:787–799

    Article  PubMed  CAS  Google Scholar 

  • Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Torok T, Hartenstein V (1996) Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 10:672–685

    Article  PubMed  CAS  Google Scholar 

  • Thomas GH, Kiehart DP (1994) Beta heavy-spectrin has a restricted tissue and subcellular distribution during Drosophila embryogenesis. Development 120:2039–2050

    PubMed  CAS  Google Scholar 

  • Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones–an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Connelly PS, Vranich KA, Shaw MK, Guild GM (1998) Why are two different cross-linkers necessary for actin bundle formation in vivo and what does each cross-link contribute? J Cell Biol 143:121–133

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Connelly PS, Vranich KA, Shaw MK, Guild GM (2000) Regulation of actin filament cross-linking and bundle shape in Drosophila bristles. J Cell Biol 148:87–100

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Connelly PS, Guild GM (2004) Microvilli appear to represent the first step in actin bundle formation in Drosophila bristles. J Cell Sci 117:3531–3538

    Article  PubMed  CAS  Google Scholar 

  • Togawa T, Nakato H, Izumi S (2004) Analysis of the chitin recognition mechanism of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem Mol Biol 34:1059–1067

    Article  PubMed  CAS  Google Scholar 

  • Tomancak P, Berman BP, Beaton A, Weiszmann R, Kwan E, Hartenstein V, Celniker SE, Rubin GM (2007) Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biol 8:R145

    Article  PubMed  CAS  Google Scholar 

  • Tonning A, Hemphala J, Tang E, Nannmark U, Samakovlis C, Uv A (2005) A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev Cell 9:423–430

    Article  PubMed  CAS  Google Scholar 

  • Tonning A, Helms S, Schwarz H, Uv AE, Moussian B (2006) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133:331–341

    Article  PubMed  CAS  Google Scholar 

  • Uv A, Moussian B (2010) The apical plasma membrane of Drosophila embryonic epithelia. Eur J Cell Biol 89:208–211

    Article  PubMed  CAS  Google Scholar 

  • Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199

    Article  PubMed  Google Scholar 

  • Vrkoslav V, Muck A, Cvacka J, Svatos A (2010) MALDI imaging of neutral cuticular lipids in insects and plants. J Am Soc Mass Spectrom 21:220–231

    Article  PubMed  CAS  Google Scholar 

  • Wang HB, Nita M, Iwanaga M, Kawasaki H (2009) betaFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. Insect Biochem Mol Biol 39:624–633

    Article  PubMed  CAS  Google Scholar 

  • Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37:889–907

    CAS  Google Scholar 

  • Wigglesworth VB (1933) The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the oenocytes and function of the dermal glands. Quart J Microscop Soc 76:270–318

    Google Scholar 

  • Wigglesworth VB (1970) Structural lipids in the insect cuticle and the function of the oenocytes. Tissue Cell 2:155–179

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1975) Distribution of lipid in the lamellate endocuticle of Rhodnius prolixus (Hemiptera). J Cell Sci 19:439–457

    PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1985) Sclerotin and lipid in the waterproofing of the insect cuticle. Tissue Cell 17:227–248

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1990) The distribution, function and nature of cuticulin in the insect cuticle. J Insect Physiol 36:307–313

    Article  CAS  Google Scholar 

  • Willis JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol 40:189–204

    Article  PubMed  CAS  Google Scholar 

  • Wittkopp PJ, True JR, Carroll SB (2002) Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129:1849–1858

    PubMed  CAS  Google Scholar 

  • Wolfgang WJ, Fristrom D, Fristrom JW (1986) The pupal cuticle of Drosophila: differential ultrastructural immunolocalization of cuticle proteins. J Cell Biol 102:306–311

    Article  PubMed  CAS  Google Scholar 

  • Wong DC, Pearson RD, Elvin CM, Merritt DJ (2012) Expression of the rubber-like protein, resilin, in developing and functional insect cuticle determined using a Drosophila anti-Rec 1 resilin antibody. Dev Dyn 241:333–339

    Article  PubMed  CAS  Google Scholar 

  • Yoon CS, Hirosawa K, Suzuki E (1997) Corneal lens secretion in newly emerged Drosophila melanogaster examined by electron microscope autoradiography. J Electron Microsc (Tokyo) 46:243–246

    Article  CAS  Google Scholar 

  • Ziegler A, Weihrauch D, Towle DW, Hagedorn M (2002) Expression of Ca2+-ATPase and Na+/Ca2+-exchanger is upregulated during epithelial Ca2+ transport in hypodermal cells of the isopod Porcellio scaber. Cell Calcium 32:131–141

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Weihrauch D, Hagedorn M, Towle DW, Bleher R (2004) Expression and polarity reversal of V-type H+-ATPase during the mineralization-demineralization cycle in Porcellio scaber sternal epithelial cells. J Exp Biol 207:1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Zimoch L, Merzendorfer H (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 308:287–297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Moussian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moussian, B. (2013). The Arthropod Cuticle. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_8

Download citation

Publish with us

Policies and ethics