Skip to main content

Arthropod Post-embryonic Development

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

The study of arthropod post-embryonic development is a chapter of biology that requires a new conceptual framework. Some of the reasons behind the inadequacy of the prevailing approach are common to the study of post-embryonic development of all, or most, animals groups; others are specific to the Arthropoda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addis A, Biagi F, Floris A, Puddu E, Carcupino M (2007) Larval development of Lightiella magdalenina (Crustacea Cephalocarida). Mar Biol 152:733–743

    Google Scholar 

  • Adis J, Golovatch SI, Wilck L, Hansen B (2000) On the identities of Muyudesmus obliteratus Kraus, 1960 versus Poratia digitata (Porat, 1889), with first biological observations on parthenogenetic and bisexual populations (Diplopoda: Polydesmida: Pyrgodesmidae). Fragmenta Faunistica (Warszawa) Suppl 43:149–170

    Google Scholar 

  • Albert AM (1982) Deviation from Dyar’s rule in Lithobiidae. Zool Anz 208:192–207

    Google Scholar 

  • Alberti G, Coons LB (1999) Acari: mites. In: Harrison FW (ed) Microscopic anatomy of invertebrates, Vol 8c. Wiley-Liss, New York, pp 515–1265

    Google Scholar 

  • Andersson G (1981) Taxonomical studies on the post-embryonic development in Swedish Lithobiomorpha (Chilopoda). Ent Scand 16(Suppl):105–124

    Google Scholar 

  • Ando T, Kojima T, Fujiwara H (2011) Dramatic changes in patterning gene expression during metamorphosis are associated with the formation of a feather-like antenna by the silk moth, Bombyx mori. Dev Biol 357:53–63

    PubMed  CAS  Google Scholar 

  • André HM, Van Impe G (2012) The missing stase in spider mites (Acari: Tetranychidae): when the adult is not the imago. Acarologia 52:3–16

    Google Scholar 

  • Andres AJ, Cherbas P (1992) Tissue-specific ecdysone responses: regulation of the Drosophila genes Eip28/29 and Eip40 during larval development. Dev 116:865–876

    CAS  Google Scholar 

  • Andres AJ, Fletcher JC, Karim FD, Thummel CS (1993) Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev Biol 160:388–404

    PubMed  CAS  Google Scholar 

  • Anger K (2001) The biology of the decapod crustacean larvae (Crustacean Issues 14). Balkema, Rotterdam

    Google Scholar 

  • Arbeitman MN, Furlong EE, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297:2270–2275

    PubMed  CAS  Google Scholar 

  • Baeza-Rojano E, Guerra-García M, Pilar Cabezas M, Pacios I (2011) Life history of Caprella grandimana (Crustacea: Amphipoda) reared under laboratory conditions. Mar Biol Res 7:85–92

    Google Scholar 

  • Balss HV, Buddenbrock W, Gruner H-E, Korschelt E (1940–1961) Decapoda. In: Bronn’s Klassen und Ordnungen des Tierreichs, vol 5(1). Akademische Verlagsgesellschaft Geest and Portig, Leipzig

    Google Scholar 

  • Beck SD (1971) Growth and retrogression in larvae of Trogoderma glabrum (Coleoptera Dermestidae). 1. Characteristics under feeding and starvation conditions. Ann Entomol Soc Am 64:149–155

    Google Scholar 

  • Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jahrb Anat 86:307–458

    Google Scholar 

  • Bennet-Clark HC (1971) The cuticle as a template for growth in Rhodnius prolixus. J Insect Physiol 17:2421–2434

    Google Scholar 

  • Berlese A (1913) Intorno alle metamorfosi degli insetti. Redia 9:121–136

    Google Scholar 

  • Bernays EA (1972) The muscles of newly hatched Schistocerca gregaria larvae and their possible functions in hatching, digging and ecdysial movements (Insecta: Acrididae). J Zool 166:141–158

    Google Scholar 

  • Bieber M, Fuldner D (1979) Brain growth during the adult stage of a holometabolous insect. Naturwissenschaften 66:426

    Google Scholar 

  • Bodenheimer FS (1933) The progression factor in insect growth. Quart Rev Biol 8:92–95

    Google Scholar 

  • Boikova OS (2008) Comparative investigation of the later embryogenesis of Leptodora kindtii (Focke, 1844) (Crustacea: Branchiopoda), with notes on types of embryonic development and larvae in Cladocera. J Nat Hist 42:2389–2416

    Google Scholar 

  • Bordereau C (1982) Ultrastructure and formation of the physogastric termite queen cuticle. Tissue Cell 14:371–396

    PubMed  CAS  Google Scholar 

  • Bortolin F, Benna C, Fusco G (2011) Gene expression during post-embryonic segmentation in the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Dev Genes Evol 221:105–111

    PubMed  CAS  Google Scholar 

  • Bridarolli A (1937) Los termitoxenidos y los estadios de su periodo larval. Estudios, Buenos Aires 56:121–138

    Google Scholar 

  • Brusven MA (1987) Superfamily Acridoidea. In: Stehr FW (ed) Immature insects, vol 1. Kendall/Hunt, Dubuque, IA, pp 162–166

    Google Scholar 

  • Calvert PP (1929) Different rates of growth among animals with special reference to the Odonata. Proc Am Philos Soc 68:227–274

    Google Scholar 

  • Canard A, Stockmann R (1993) Comparative post-embryonic development of arachnids. Mem Queensland Mus 33:61–468

    Google Scholar 

  • Cassagnau P (1985) Le polymorphisme des femelles d’Hydroisotoma schaefferi (Krausbauer): un nouveau cas d’épitoquie chez les collemboles. Ann Soc Entom France NS 21:287–296

    Google Scholar 

  • Cayre M, Strambi C, Charpin P, Augier R, Meyer MR, Edwards JS, Strambi A (1996) Neurogenesis in adult insect mushroom bodies. J Comp Neurol 371:300–310

    PubMed  CAS  Google Scholar 

  • Cayre M, Strambi C, Strambi A (1994) Neurogenesis in an adult insect brain and its hormonal control. Nature 368:57–59

    CAS  Google Scholar 

  • Chesebro J, Hrycaj S, Mahfooz N, Popadic A (2009) Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus. Dev Biol 329:142–151

    PubMed  CAS  Google Scholar 

  • Chippendale GM, Yin C-M (1973) Endocrine activity retained in diapause insect larvae. Nature 246:511–513

    Google Scholar 

  • Coineau Y, Legendre R (1975) Sur un mode de régénération appendiculaire inédit chez les arthropodes: la régénération des pattes marcheuses chez les opilioacariens (Acari: Notostigmata). CR Hebd Séances Acad Sci, Paris 280D, pp 41–43

    Google Scholar 

  • Cole BJ (1980) Growth ratios in holometabolous and hemimetabolous insects. Ann Entom Soc Am 73:489–491

    Google Scholar 

  • Corbet PS (1999) Dragonflies. Harley Books, Colchester

    Google Scholar 

  • Dai T, Zhang X (2011) Ontogeny of the eodiscoid trilobite Tsunyidiscus acutus from the lower Cambrian of South China. Palaeontol 54:1279–1288

    Google Scholar 

  • da Castiglioni DS, Garcia-Schroeder D, Barcelos DF, Bond-Buckup G (2007) Intermolt duration and postembryonic growth of two sympatric species of Hyalella (Amphipoda, Dogielinotidae) in laboratory conditions. Nauplius 15:57–64

    Google Scholar 

  • David J-F, Geoffroy J-J (2011) Additional moults into ‘elongatus’ males in laboratory-reared Polydesmus angustus Latzel, 1884 (Diplopoda, Polydesmida, Polydesmidae): implications for taxonomy. ZooKeys 156:41–48

    PubMed  Google Scholar 

  • Degrange C (1959) Nombre de mues et organe de Palmén de Cloeon simile Etn. (Ephéméroptères), vol 249. C R Hebd Seances Acad Sci, Paris, pp 2118–2119

    Google Scholar 

  • Deleurance-Glaçon S (1963a) Recherches sur les coléoptères troglobies de la sous-famille des Bathysciinae. Ann Sci Nat Zool 12:1–173

    Google Scholar 

  • Deleurance-Glaçon S (1963b) Contribution à l’étude des coléoptères cavernicoles de la sous-famille des Trechines. Ann Spéléol 18:227–265

    Google Scholar 

  • De Loof A, Huybrechts J, Geens M, Vandermissen T, Boerjan B, Schoofs L (2010) Sexual differentiation in adult insects: male-specific cuticular yellowing in Schistocerca gregaria as a model for evaluating some current (neuro)endocrine concepts. J Insect Physiol 56:919–925

    PubMed  Google Scholar 

  • Dirsh VM (1937) Postembryonic growth in the Pachyiulus flavipes C. L. Koch (Diplopoda). Zool Zh 16:324–335 (in Russian)

    Google Scholar 

  • Dirsh VM (1967) The post-embryonic ontogeny of Acridomorpha (Orthoptera). Eos, Madrid 43:413–514

    Google Scholar 

  • Disney RHL (1994) Scuttle flies: the Phoridae. Chapman and Hall, London

    Google Scholar 

  • Dogiel V (1913) Embryologische Studien an Pantopoden. Ztsch wiss Zool 107:575–741

    Google Scholar 

  • Dohle W (1988) Myriapoda and the ancestry of insects. Manchester Polytechnic, Manchester

    Google Scholar 

  • Dong D-J, He H-J, Chai L-Q, Jiang X-J, Wang J-X, Zhao X-F (2007) Identification of genes differentially expressed during larval molting and metamorphosis of Helicoverpa armigera. BMC Dev Biol 7:73; doi:10.1186/1471-213X-7-73

  • Drago L, Fusco G, Garollo E, Minelli A (2011) Structural aspects of leg-to-gonopod metamorphosis in male helminthomorph millipedes (Diplopoda). Front Zool 8: 19; doi:10.1186/1742-9994-8-19

  • Drago L, Fusco G, Minelli A (2008) Non-systemic metamorphosis in male millipede appendages: long delayed, reversible effect of an early localized positional marker? Front Zool 5: 5; doi:10.1186/1742-9994-5-5

  • Dufour MC, Gadenne C (2006) Adult neurogenesis in a moth brain. J Comp Neurol 495:635–643

    PubMed  CAS  Google Scholar 

  • Dunger W (2003) Ordnung Diplura, Doppelschwänze. In: Dathe HH (ed) Lehrbuch der speziellen Zoologie. Band I: Wirbellose Tiere, 5. Teil: Insecta. Spektrum, Heidelberg, pp 87–96

    Google Scholar 

  • Dyar HG (1890) The number of molts of lepidopterous larvae. Psyche 5:420–422

    Google Scholar 

  • Enders F (1976) Size, food-finding, and Dyar’s constant. Envir Entomol 5:1–10

    Google Scholar 

  • Enghoff H, Dohle W, Blower JG (1993) Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations. Zool J Linn Soc 109:103–234

    Google Scholar 

  • Esperk T, Tammaru T, Nylin S (2007a) Intraspecific variability in number of larval instars in insects. J Econ Entomol 100:627–645

    PubMed  Google Scholar 

  • Esperk T, Tammaru T, Nylin S, Teder T (2007b) Achieving high sexual size dimorphism in insects: females add instars. Ecol Entomol 32:243–256

    Google Scholar 

  • Evans GO (1992) Principles of acarology. CAB International, Wallingford

    Google Scholar 

  • Fabre JL (1855) Recherches sur l’anatomie des organes reproducteurs et sur le développement des Myriapodes. Ann Sc nat Zool 4:257–316

    Google Scholar 

  • Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. (Entomonograph vol 8). Brill and Scandinavian Science Press, Leiden-Copenhagen

    Google Scholar 

  • Ferrari FD, Dahms HU (2007) Postembryonic development of the Copepoda. Crust Issues 8:1–232

    Google Scholar 

  • Franssen CJH (1933) Biologische Untersuchungen an Termitoxenia hemicyclia Schmitz, Termitoxenia punctiventris Schmitz und Odontoxenia brevirostris Schmitz. Biol Zbl 53:337–358

    Google Scholar 

  • Franssen CJH (1936) Aanteekeningen over de ontwikkelingscyclus der Termitoxeniidae (Dipt.). Ent Meded Nederlandsch-Indië 2:62–65

    Google Scholar 

  • Freeman JA (1991) Growth and morphogenesis in crustacean larvae. Mem Queensland Mus 31:309–319

    Google Scholar 

  • Fritsch M, Richter S (2012) Nervous system development in Spinicaudata and Cyclestherida (Crustacea, Branchiopoda): comparing two different modes of indirect development by using an event pairing approach. J Morphol 273:672–695

    PubMed  Google Scholar 

  • Fusco G (2005) Trunk segment numbers and sequential segmentation in myriapods. Evol Dev 7:608–617

    PubMed  Google Scholar 

  • Fusco G, Garland T Jr, Hunt G, Hughes NC (2012) Developmental trait evolution in trilobites. Evolution 66:314–329

    PubMed  Google Scholar 

  • Fusco G, Hughes NC, Webster M, Minelli A (2004) Exploring developmental modes in a fossil arthropod: growth and trunk segmentation of the trilobite Aulacopleura konincki. Am Nat 163:167–183

    PubMed  Google Scholar 

  • Gertsch WJ (1955) The north American bolas spiders of the genera Mastophora and Agatostichus. Bull Amer Mus Nat Hist 106:225–254

    Google Scholar 

  • Gibert J-M, Mouchel-Vielh E, Quéinnec E, Deutsch JS (2000) Barnacle duplicate engrailed genes: divergent expression patterns and evidence for a vestigial abdomen. Evol Dev 2:1–9

    Google Scholar 

  • Glenner H, Hoeg JT, Grygier MJ, Fujita Y (2008) Induced metamorphosis in crustacean y-larvae: towards a solution to a 100 years-old riddle. BMC Biology 6:21; doi:10.1186/1741-7007-6-21

  • Gnaspini P (2007) Development. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, pp 455–472

    Google Scholar 

  • Gnaspini P, Da Silva MB, Pioker FC (2004) The occurrence of two adult instars among Grassatores (Arachnida: Opiliones): a new type of life-cycle in arachnids. Invert Repr Dev 45:29–39

    Google Scholar 

  • Goodwin TW, Srikukh S (1949) The biochemistry of locusts I. The carotenoids of the integument of two locust species [Locusta migratoria migratorioides R and F, and Schistocerca gregaria (Forsk.)]. Biochem J 45:263–268

    PubMed  CAS  Google Scholar 

  • Gore RH (1985) Molting and growth in decapod larvae. In: Wenner AM (ed) Larval growth (Crustacean Issues 2). Balkema, Rotterdam, pp 1–65

    Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, Van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    PubMed  CAS  Google Scholar 

  • Grewal SS (2012) Controlling animal growth and body size: does fruit fly physiology point the way? F1000 Biol Rep 4:12; doi: 10.3410/B4-12

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Groll EK, Günther KK (2003) Ordnung Saltatoria (Orthoptera), Heuschrecken, Springschrecken. In: Dathe HH (ed) Lehrbuch der speziellen Zoologie. Band I: Wirbellose Tiere, 5. Teil: Insecta. Spektrum, Heidelberg, 17:261–290

    Google Scholar 

  • Gruner H-E (1993) Klasse Crustacea. In: Gruner H-E, Moritz M, Dunger W (eds) Lehrbuch der speziellen Zoologie. Band I: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta). Fischer, Jena, 1:448–1030

    Google Scholar 

  • Gu SH, Tsia WH, Chiang AS, Chow YS (1999) Mitogenic effect of 20-hydroxyecdysone on neurogenesis in adult mushroom bodies of the cockroach Diploptera punctata. J Neurobiol 39:264–274

    PubMed  CAS  Google Scholar 

  • Gurney R (1937) Notes on some decapod Crustacea from the Red Sea I. The genus Processa. II. The larvae of Upogebia savignyi Strahl. Proc Zool Soc London 1937:85–101

    Google Scholar 

  • Hackman RH (1975) Expanding abdominal cuticle in the bug Rhodnius and the tick Boophilus. J Insect Physiol 21:1613–1623

    PubMed  CAS  Google Scholar 

  • Hackman RH (1982) Structure and function in tick cuticle. Annu Rev Entomol 27:75–95

    PubMed  CAS  Google Scholar 

  • Halkka R (1958) Life history of Schizophyllum sabulosum (L.) (Diplopoda, Iulidae). Anns Zool Soc Zool Bot Fenn Vanamo 19(4):1–72

    Google Scholar 

  • Hall BK, Wake MH (1999) The origin and evolution of larval forms. Academic Press, San Diego

    Google Scholar 

  • Hartnoll RG, Dalley R (1981) The control of size variation within instars of a crustacean. J Exp Mar Biol Ecol 53:235–239

    Google Scholar 

  • Hartnoll RG (1982) Growth. In: Bliss DE (ed) The biology of Crustacea, vol 2. Academic Press, New York, pp 111–196

    Google Scholar 

  • Harzsch S, Melzer RR, Müller CHG (2007) Mechanisms of eye development and evolution of the arthropod visual system: the lateral eyes of myriapoda are not modified insect ommatidia. Org Divers Evol 7:20–32

    Google Scholar 

  • Held LI Jr (2002) Imaginal discs: the genetic and cellular logic of pattern formation. Cambridge University Press, Cambridge

    Google Scholar 

  • Heming BS (2003) Insect development and evolution. Comstock, Ithaca-London

    Google Scholar 

  • Hockman D, Picker MD, Klass K-D, Pretorius L (2009) Postembryonic development of the unique antenna of Mantophasmatodea (Insecta). Arthropod Struct Dev 38:125–133

    PubMed  Google Scholar 

  • Horn HS, May RM (1977) Limits to similarity among coexisting competitors. Nature 270:660–661

    Google Scholar 

  • Houston TF (2010) Egg gigantism in some Australian earth-borer beetles (Coleoptera: Geotrupidae: Bolboceratinae) and its apparent association with reduction or elimination of larval feeding. Austral J Entomol 50:164–173

    Google Scholar 

  • Howes NH (1939) Observations on the biology and post-embryonic development of Idotea viridis (Slabber) (Isopoda, Valvifera) from New England Creek, South-east Essex. J mar biol Ass UK 23:279–310

    Google Scholar 

  • Hrycaj S, Chesebro J, Popadic A (2010) Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana. Dev Biol 341:324–334

    PubMed  CAS  Google Scholar 

  • Hughes NC, Minelli A, Fusco G (2006) The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32:602–627

    Google Scholar 

  • Hutchinson GE, Tongrid N (1984) The possible adaptive significance of the Brooks-Dyar rule. J Theor Biol 106:437–439

    Google Scholar 

  • Immamura T (1952) Notes on the moulting of the adult of the water mite, Arrenurus uchidai n. sp. Annotat Zool Jap 25:447–451

    Google Scholar 

  • Janssen R, Prpic N-M, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    PubMed  CAS  Google Scholar 

  • Jarjees EA, Merritt DJ (2002) Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) in Helicoverpa (Lepidoptera: Noctuidae) host eggs. Austral J Entomol 41:310–315

    Google Scholar 

  • Junqua C (1966) Recherches biologiques et histophysiologiques sur un solifuge saharien Othoes saharae Panouse. Mém Mus Natn Hist Nat A 43:1–124

    Google Scholar 

  • Kfir R (1991) Effect of diapause on development and reproduction of the stem borers Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Pyralidae). J Econ Entomol 84:1677–1680

    Google Scholar 

  • Kinzelbach R (1971) Strepsiptera (Fächerflügler). Handbuch der Zoologie 4 (2, 2/24). de Gruyter, Berlin

    Google Scholar 

  • Klingenberg CP (1996) Individual variation of ontogenies: a longitudinal study of growth and timing. Evol 50:2412–2428

    Google Scholar 

  • Klingenberg CP, Zimmermann M (1992) Dyar’s rule and multivariate allometric growth in nine species of waterstriders (Heteroptera: Gerridae). J Zool (Lond) 227:453–464

    Google Scholar 

  • Kluge NJ (2004) Larval/pupal leg transformation and a new diagnosis for the taxon Metabola Burmeister, 1832 = Oligoneoptera Martynov, 1923. Russian Entomol J 13:189–229

    Google Scholar 

  • Knittel LM, Kent KS (2005) Remodeling of an identified motoneuron during metamorphosis: hormonal influences on the growth of dendrites and axon terminals. J Neurobiol 63:106–125

    PubMed  CAS  Google Scholar 

  • Konopová B, Zrzavý J (2005) Ultrastructure, development, and homology of insect embryonic cuticles. J Morphol 264:339–362

    PubMed  Google Scholar 

  • Kotov AA, Boikova OS (1998) Comparative analysis of the late embryogenesis of Sida crystallina (O.F. Müller, 1776) and Diaphanosoma brachyurum (Lievin 1848) (Crustacea: Branchiopoda: Ctenopoda). Hydrobiologia 380:103–125

    Google Scholar 

  • Lawrence JF (1991) Order Coleoptera. In: Stehr FW (ed) Immature insects, vol 2. Kendall/Hunt, Dubuque, pp 144–658

    Google Scholar 

  • Lawrence PA (1966) Development and determination of hairs and bristles in the milkweed bug, Oncopeltus fasciatus (Lygaeidae, Hemiptera). J Cell Sci 1:475–498

    PubMed  CAS  Google Scholar 

  • Levy G (1970) The life cycle of Thomisus onustus (Thomisidae: Araneae) and outlines for the classification of the life histories of spiders. J Zool (Lond) 160:523–536

    Google Scholar 

  • Li TR, White KP (2003) Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Dev Cell 5:59–72

    PubMed  CAS  Google Scholar 

  • Lytle DA (2001) Convergent growth regulation in arthropods: biological fact or statistical artifact? Oecologia 128:56–61

    Google Scholar 

  • Maiorana VC (1978) An explanation of ecological and developmental constants. Nat 273:375–377

    Google Scholar 

  • Malun D, Moseleit AD, Grunewald B (2003) 20-Hydroxyecdysone inhibits the mitotic activity of neuronal precursors in the developing mushroom bodies of the honeybee, Apis mellifera. J Neurobiol 57:1–14

    PubMed  CAS  Google Scholar 

  • Manzanares M, Marco R, Garesse R (1993) Genomic organization and developmental pattern of expression of the engrailed gene from the brine shrimp Artemia. Dev 118:1209–1219

    CAS  Google Scholar 

  • Mauriès J-P (1980) Diplopodes chilognathes de la Guadeloupe et ses dépendances. Bull Mus Natn Hist Nat (4) 2A:1059–1111

    Google Scholar 

  • Mckenzie HL (1932) The biology and feeding habits of Hyperaspis lateralis Mulsant (Coleoptera – Coccinellidae). Univ California Publ Entomol 6:9–21

    Google Scholar 

  • Michalik P, Uhl G (2005) The male genital system of the cellar spider Pholcus phalangioides (Fuesslin 1775) (Pholcidae, Araneae): Development of spermatozoa and seminal secretion. Front Zool 2:12; doi: 10.1186/1742-9994-2-12

  • Michel A, Manning RB (1972) The pelagic larvae of Chorisquilla tuberculata (Borradaile, 1907). (Stomatopoda). Crustaceana 22:113–126

    Google Scholar 

  • Michener CD (1946) The taxonomy and bionomics of some Panamanian trombidiid mites (Acarina). Annals Entom Soc Am 39:349–380

    Google Scholar 

  • Miller WE (1996) Population behavior and adult feeding capability in Lepidoptera. Envir Entomol 25:213–226

    Google Scholar 

  • Minelli A (1996) Segments, body regions and the control of development through time. Mem California Acad Sci 20:55–61

    Google Scholar 

  • Minelli A (1998) Molecules, developmental modules and phenotypes: a combinatorial approach to homology. Mol Phyl Evol 9:340–347

    CAS  Google Scholar 

  • Minelli A (2003) The development of animal form: ontogeny, morphology, and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Minelli A (2009) Perspectives in animal phylogeny and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Minelli A, Brena C, Deflorian G, Maruzzo D, Fusco G (2006) From embryo to adult. Beyond the conventional periodization of arthropod development. Dev Genes Evol 216:373–383

    PubMed  Google Scholar 

  • Minelli A, Fusco G (2004) Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol Evol 19:423–429

    PubMed  Google Scholar 

  • Minelli A, Fusco G (2010) Developmental plasticity and the evolution of animal complex life cycles. In: Fusco G, Minelli A (eds) From polyphenism to complex metazoan life cycles. Phil Trans R Soc B 365:631–640

    PubMed  Google Scholar 

  • Minelli A, Fusco G (2013) Homology. In: Kampourakis K (ed) Philosophical issues in biology education. Springer, Heidelberg-Berlin

    Google Scholar 

  • Minelli A, Maruzzo D, Fusco G (2010) Multi-scale relationships between numbers and size in the evolution of arthropod body features. Arthropod Struct Dev 39:468–477

    PubMed  Google Scholar 

  • Monod T (1926) Les Gnathiidae. Essai monographique (morphologie, biologie, systématique). Mém Soc Sci Nat Maroc 13:1–661

    Google Scholar 

  • Murakami Y (1962) Postembryonic development of the common Myriapoda of Japan. XI–XII Life history of Bazillozonium nodulosum Verhoeff (Colobognatha, Platydesmidae). 1–2. Zool Mag (Dobutsugaku Zasshi) 71:250–255, 291–294

    Google Scholar 

  • Nijhout HF (1975) A threshold size for metamorphosis in the tobacco hornworm Manduca sexta (L.). Biol Bull 149:214–225

    PubMed  CAS  Google Scholar 

  • Nijhout HF (1994) Insects hormones. Princeton University Press, Princeton

    Google Scholar 

  • Nijhout HF (2003) The control of body size in insects. Dev Biol 261:1–9

    PubMed  CAS  Google Scholar 

  • Nijhout HF (2011) Dependence of morphometric allometries on the growth kinetics of body parts. J Theor Biol 288:35–43

    PubMed  Google Scholar 

  • Nijhout HF, Davidowitz G (2003) Developmental perspectives on phenotypic variation, canalization, and fluctuating asymmetry. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, New York, pp 3–13

    Google Scholar 

  • Nijhout HF, Roff DA, Davidowitz G (2010) Conflicting processes in the evolution of body size and development time. Phil Trans R Soc B 365:577–591

    Google Scholar 

  • Nikolei E (1961) Vergleichende Untersuchungen zur Fortpflanzung der heterogenen Gallmücken unter experimentellen Bedingungen. Ztschr Morphol Ökol Tiere 50:281–329

    Google Scholar 

  • Pollock DA, Normark BB (2002) The life cycle of Micromalthus debilis LeConte (1878) (Coleoptera: Archostemata: Micromalthidae): historical review and evolutionary perspective. J Zool Syst Evol Res 40:105–112

    Google Scholar 

  • Przibram H, MeguÅ¡ar F (1912) Wachstumsmessungen an Sphodromantis bioculata Burm. I. Länge und Masse. Arch Entw Mech Org 34:680–741

    Google Scholar 

  • Quennedey A, Aribi N, Everaerts C, Delbecque J-P (1995) Post-embryonic development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hormone analogues applications. J Insect Physiol 41:143–152

    CAS  Google Scholar 

  • Rabalais NN, Gore RH (1985) Abbreviated development in decapods. In: Wenner AM (ed) Larval growth (Crustacean Issues 2). Balkema, Rotterdam, pp 67–126

    Google Scholar 

  • Rantala M (1974) Sex ratio and periodomorphosis of Proteroiulus fuscus (Am Stein) (Diplopoda, Blaniulidae). Symp Zool Soc Lond 32:463–469

    Google Scholar 

  • Rice AL (1968) Growth ‘rules’ and the larvae of decapod crustaceans. J Nat Hist 2:525–530

    Google Scholar 

  • Riddiford LM, Hiruma K, Zhou X, Nelson CA (2003) Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol 33:1327–1338

    PubMed  CAS  Google Scholar 

  • Sahli F (1969) Contribution à l’étude de développement post-embryonnaire des Diplopodes Iulides. Ann Univ Saraviensis math-naturwiss Fak 7:1–154

    Google Scholar 

  • Sahli F (1985) Periodomorphose et mâles intercalaires des Diplopodes Julida: une nouvelle terminologie. Bull sci Bourgogne 38:23–31

    Google Scholar 

  • Sahli F (1989) The structure of two populations of Tachypodoiulus niger (Leach) in Burgundy and some remarks on periodomorphosis. Rev Ecol Biol Sol 26:355–361

    Google Scholar 

  • Sahli F (1990) On post-adult moults in Julida (Myriapoda: Diplopoda). Why do periodomorphosis and intercalaries occur in males? In: Minelli A (ed) Proceedings of the 7th International Congress of Myriapodology. Leiden, Brill, pp 135–156

    Google Scholar 

  • Sanders HL (1963) The Cephalocarida. functional morphology. larval development, comparative external anatomy. Mem Conn Acad Arts Sci 15:1–80

    Google Scholar 

  • Schmidt FH, Lauer WL (1977) Developmental polymorphism in Choristoneura spp. (Lepidoptera: Tortricidae). Ann Entom Soc Am 70:112–118

    Google Scholar 

  • Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zool Syst Evol Res 38:175–187

    Google Scholar 

  • Scholtz G (2008) On comparisons and causes in evolutionary developmental biology In: Minelli A, Fusco G (eds) Evolving pathways. Cambridge University Press, Cambridge, pp 144–159

    Google Scholar 

  • Schömann K (1956) Zur Biologie von Polyxenus lagurus (L. 1758). Zool Jahrb Syst 84:195–256

    Google Scholar 

  • Schram FR (1986) Crustacea. Oxford University Press, New York

    Google Scholar 

  • Seevers CH (1957) A monograph on the termitophilous Staphylinidae (Coleoptera). Fiediana Zoology 40:1–334

    Google Scholar 

  • Sehnal F (1985) Growth and life cycles. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 2. Pergamon Press, Oxford, pp 1–86

    Google Scholar 

  • Sehnal F, Svácha P, Zrzavý J (1996) Evolution of insect metamorphosis. In: Gilbert LI, Tata JR, Atkinson NG (eds) Metamorphosis. Postembryonic reprogramming of gene expression in amphibian and insect cells. Academic Press, New York, pp 3–58

    Google Scholar 

  • Sekiguchi K, Seshimo H, Sugita H (1988) Post-embryonic development of the horseshoe crab. Biol Bull 174:337–345

    Google Scholar 

  • Shimizu S, Machida R (2011) Reproductive biology and postembryonic development in the basal earwig Diplatys flavicollis (Shiraki) (Insecta: Dermaptera: Diplatyidae). Arthropod Syst Phylog 69:83–97

    Google Scholar 

  • Shokita S (1977) Abbreviated metamorphosis of land-locked fresh-water prawn, Macrobrachium asperulum (Von Martens) from Taiwan. Annot Zool Jap 50:110–122

    Google Scholar 

  • Silvestri F (1949) Segmentazione del corpo dei Colobognati (Diplopodi). Boll Lab Entom Agr Portici 9:115–121

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Soares Moreira P, Setubal Pires AM (1977) Aspects of the breeding biology of Janaira gracilis Moreira and Pires (Crustacea, Isopoda, Asellota). Bol Inst Oceanogr 26:181–199

    Google Scholar 

  • Solomon JD (1973) Instars in the carpenterworm, Prionoxystus robiniae. Ann Entom Soc Am 66:1258–1260

    Google Scholar 

  • Stehr FW (ed) (1987, 1991) Immature insects. Vol 1 (1987), Vol 2 (1991). Kendall/Hunt, Dubuque

    Google Scholar 

  • Stern D (2003) Body-size control: how an insect knows it has grown enough. Curr Biol 13:R267–R269

    PubMed  CAS  Google Scholar 

  • Å tys P, Davidova-Vilimova J (1989) Unusual numbers of instars in Heteroptera: a review. Acta Entomol Bohemoslov 86:1–32

    Google Scholar 

  • Szlep R (1961) Developmental changes in the web-spinning instinct of Uloboridae: construction of the primary type web. Behaviour 27:60–70

    Google Scholar 

  • Tanaka A (1981) Regulation of body size during larval development in the German cockroach, Blattella germanica. J Insect Physiol 27:587–592

    Google Scholar 

  • Tanaka K, Truman JW (2007) Molecular patterning mechanism underlying metamorphosis of the thoracic leg in Manduca sexta. Dev Biol 305:539–550

    PubMed  CAS  Google Scholar 

  • Tissot M, Stocker RF (2000) Metamorphosis in Drosophila and other insects: the fate of neurons throughout the stages. Prog Neurobiol 62:89–111

    PubMed  CAS  Google Scholar 

  • Titschack E (1926) Untersuchungen über das Wachstum, den Nahrungsverbrauch und die Eierzeugung. II. Tineola bisselliella Hum. Gleichzeitig ein Beitrag zur Klärung der Insektenhäutung. Ztschr wiss Zool 128:509–569

    Google Scholar 

  • Tomkins JL, Moczek AP (2009) Patterns of threshold evolution in polyphenic insects under different developmental models. Evolution 63:459–468

    PubMed  Google Scholar 

  • Truman JW, Reiss SE (1995) Neuromuscular metamorphosis in the moth Manduca sexta –hormonal regulation of synapse loss and remodeling. J Neurosci 15:4815–4826

    PubMed  CAS  Google Scholar 

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    PubMed  CAS  Google Scholar 

  • Truman JW, Taylor BJ, Awad TA (1993) Formation of the adult nervous system. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, New York, pp 1245–1275

    Google Scholar 

  • Twombly S, Tisch N (2000) Body size regulation in copepod crustaceans. Oecologia 122:318–326

    Google Scholar 

  • Uvarov BP (1966) Grasshoppers and locusts. a handbook of general acridology. Vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Verhoeff KW (1916) Abhängigkeit der Diplopoden und besonders der Juliden-Schaltmännchen von äußeren Einflüssen. Ztschr Wiss Zool 116:535–586

    Google Scholar 

  • Verhoeff KW (1923) Periodomorphose. Zool Anz 56(233–238):241–254

    Google Scholar 

  • Verhoeff KW (1928) Durch Zucht erhaltene Formen des Polydesmus complanatus, illyricus Verh. und ihre Bedeutung, sowie Beurteilung der Elongation. Ztschr Morphol Ökol Tiere 12:684–705

    Google Scholar 

  • Verhoeff KW (1933) Wachstum und Lebensverlängerung bei Blaniuliden und über die Periodomorphose. Ztschr Morph Ökol Tiere 27:732–748

    Google Scholar 

  • Verhoeff KW (1934) Ãœber die Diplopoden der Allgäuer Alpen, deutsche Craspedosomen und Periodomorphose. Zool Anz 108:27–40

    Google Scholar 

  • Verhoeff KW (1939) Wachstum und Lebensverlängerung bei Blaniuliden und über die Periodomorphose, II Teil. Ztschr Morph Ökol Tiere 36:21–40

    Google Scholar 

  • von Lieven AM (2005) The embryonic moult in diplogastrids (Nematoda): homology of developmental stages and heterochrony as a prerequisite for morphological diversity. Zool Anz 244:79–91

    Google Scholar 

  • Walossek D (1993) The Upper Cambrian Rehbachiella kinnekullensis and the phylogeny of Branchiopoda and Crustacea. Fossils Strata 32:1–202

    Google Scholar 

  • Walters FFA, Dixon AFG, Eagles G (1984) Non-feeding by adult gynoparae of Rhopalosiphum padi and its bearing on the limiting resource in the production of sexual females in host alternating aphids. Entom Exp Appl 36:9–12

    Google Scholar 

  • West TL, Costlow JD (1987) Size regulation in the crustacean Balanus eburneus (Cirripedia: Thoracica). Mar Biol 96:47–58

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology. Chapman and Hall, London

    Google Scholar 

  • Williams DW, Truman JW (2005) Remodeling dendrites during insect metamorphosis. J Neurobiol 64:24–33

    PubMed  CAS  Google Scholar 

  • Williamson DI (1969) Names of larvae in the Decapoda and Euphausiacea. Crustaceana 16:210–213

    Google Scholar 

  • Williamson DI (1982) Larval morphology and diversity. In: Abele LG (ed) Biology of the Crustacea, vol 2. Academic Press, New York, pp 43–110

    Google Scholar 

  • Wilson TH (1975) A monograph of the subfamily Panchaetothripinae (Thysanoptera: Thripidae). Mem Am Entom Inst 23:1–354

    Google Scholar 

  • Wyatt IJ (1961) Pupal paedogenesis in the Cecidomyidae (Diptera), I. Proc R Entom Soc A 36:133–143

    Google Scholar 

  • Wyatt IJ (1964) Immature stages of Lestremiinae (Diptera: Cecidomyidae) infesting cultivated mushrooms. Trans R Entom Soc 116:15–27

    Google Scholar 

  • Yu L, Coddington J (1990) Ontogenetic changes in the spinning fields of Nuctenea cornuta and Neoscona theisi (Araneae, Araneidae). J Arachnol 18:331–345

    Google Scholar 

  • Zimmer M (2002) Postembryonic ontogenetic development in Porcellio scaber (Isopoda: Oniscidea): the significance of food. Invert Repr Dev 42:75–82

    Google Scholar 

  • zur Strassen R, Göllner-Scheiding U (2003) Ordnung Thysanoptera (Physopoda), Fransenflügler, Thripse, Blasenfüße. In: Dathe HH (ed) Lehrbuch der speziellen Zoologie. Band I: Wirbellose Tiere, 5, 21. Teil: Insecta. Spektrum, Heidelberg, pp 331–342

    Google Scholar 

Download references

Acknowledgments

We are grateful to Fred Schram for comments on a draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minelli, A., Fusco, G. (2013). Arthropod Post-embryonic Development. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_5

Download citation

Publish with us

Policies and ethics