Skip to main content

Arthropod Embryology: Cleavage and Germ Band Development

  • Chapter
  • First Online:

Abstract

The overwhelming diversity of arthropod morphology and lifestyles finds it correspondence in a comparatively impressive variety of developmental trajectories. These ontogenetic differences concern all embryonic stages, steps, and levels from gene expression, cleavage and gastrulation, germ band formation and growth, to segmentation and morphogenesis (Weygoldt 1960a, 1963; Anderson 1973; Scholtz 1997; Akam 2000; Hughes and Kaufman 2002a). Likewise, postembryonic development reveals all sorts of growth patterns, direct and indirect development and within the latter a great variety of larval types with a wide spectrum of lifestyles comparable to those of the adult forms (see Chap. 5). However, it has to be stressed that variation in development is not necessarily directly correlated or even causally linked to adult diversity. Similar adult body organization and shapes can result from very different ontogenies, whereas similar ontogenies can result in highly diverse adults (Scholtz 2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akam M (2000) Arthropods: developmental diversity within a (super) phylum. Proc Natl Acad Sci USA 97:4438–4441

    PubMed  CAS  Google Scholar 

  • Alwes F, Scholtz G (2004) Cleavage and gastrulation of the euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca). Zoomorphology 123:125–137

    Google Scholar 

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    PubMed  Google Scholar 

  • Amma K (1911) Über die Differenzierung der Keimbahnzellen bei den Copepoden. Arch Zellforsch 6:497–576

    Google Scholar 

  • Anderson DT (1965) Embryonic and larval development and segment formation in Ibla quadrivalvis (Cuv.). Austr J Zool 13:1–15

    Google Scholar 

  • Anderson DT (1966) The comparative early embryology of the Oligochaeta, Hirudinea and Onychophora. Proc Linn Soc New South Wales 91:10–43

    Google Scholar 

  • Anderson DT (1969) On the embryology of the cirripede crustaceans Tetraclita rosea (Krauss), Tetraclita purpurascens (Wood), Chthamalus antennatus Darwin and Chamaesipho columna (Spengler) and some considerations of crustacean phylogenetic relationships. Phil Trans R Soc B 256:183–235

    Google Scholar 

  • Anderson DT (1973) Embryology and Phylogeny in Annelids and Arthropods. Pergamon, Oxford

    Google Scholar 

  • Barnett AA, Thomas RH (2012) The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev 14:383–392

    PubMed  CAS  Google Scholar 

  • Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jb Anat 86:307–458

    Google Scholar 

  • Bergh RS (1893) Beiträge zur Embryologie der Crustaceen. I. Zur Bildungsgeschichte des Keimstreifens von Mysis. Zool Jb Anat 6:491–528

    Google Scholar 

  • Biffis C, Alwes F, Scholtz G (2009) Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda). Arthropod Struct Dev 38:527–540

    PubMed  Google Scholar 

  • Bigelow MA (1902) The early development of Lepas. A study of cell lineage and germ layers. Bull Mus Comp Zool Harvard 40:61–144

    Google Scholar 

  • Bock E (1942) Wechselbeziehungen zwischen den Keimblättern bei der Organbildung von Chrysopa perla (L.) I. Die Entwicklung des Ektoderms in mesodermdefekten Keimteilen. W Roux`s Arch EntwMech Org 141:159–279

    Google Scholar 

  • Braband A, Richter S, Hiesel R, Scholtz G (2002) Phylogenetic relationships within the Phyllopoda (Crustacea, Branchiopoda) based on mitochondrial and nuclear markers. Mol Phylogenet Evol 25:229–244

    PubMed  CAS  Google Scholar 

  • Brauer A (1895) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions II. Z Wiss Zool 59:351–435

    Google Scholar 

  • Bregazzi PK (1973) Embryological development in Tryphosella kergueleni (Miers) and Cheirimedon femoratus (Pfeffer) (Crustacea: Amphipoda). Br Antarct Surv Bull 32:63–74

    Google Scholar 

  • Brena C, Akam M (2012) The embryonic development of the centipede Strigamia maritima. Dev Biol 363:290–307

    PubMed  CAS  Google Scholar 

  • Brenneis G, Arango CP, Scholtz G (2011) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: Embryonic development. Dev Genes Evol 221:309–328

    PubMed  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    PubMed  CAS  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The Embryonic Development of Drosophila melanogaster. Springer, Berlin

    Google Scholar 

  • Cannon HG (1921) The early development of the summer egg of a cladoceran (Simocephalus vetulus). Quart J Micr Sci 65:627–642

    Google Scholar 

  • Castellani C, Maas A, Waloszek D, Haug JT (2011) New pentastomids from the late Cambrian of Sweden–deeper insights of the ontogeny of fossil tongue worms. Palaeontographica A 293:95–145

    Google Scholar 

  • Chen J, Braun A, Waloszek D, Peng Q, Maas A (2004) Lower Cambrian yolk-pyramid embryos from southern Shaanxi, China. Progr Nat Sci 14:167–172

    Google Scholar 

  • Chipman AD (2008) Thoughts and speculations on the ancestral arthropod segmentation pathway. In: Minelli A, Fusco G (eds) Evolving Pathways. Cambridge University Press, Cambridge, pp 343–358

    Google Scholar 

  • Chipman AD, Arthur W, Akam M (2004) Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha). Evol Dev 6:78–89

    PubMed  Google Scholar 

  • Claypole AM (1898) The embryology and oogenesis of Anurida maritima. J Morphol 14:219–300

    Google Scholar 

  • Copf T, Schröder R, Averof M (2004) Ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci USA 101:17711–17715

    PubMed  CAS  Google Scholar 

  • Damen WGM (2002) Parasegmental organization of spider embryos implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    PubMed  CAS  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    PubMed  CAS  Google Scholar 

  • Dawydoff C (1928) Traité d’embryologie comparée des Invertébrés. Masson, Paris

    Google Scholar 

  • Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472

    PubMed  CAS  Google Scholar 

  • Delsman HC (1917) Die Embryonalentwicklung von Balanus balanoides Linn. Tijdschr Ned Dierk Ver 2nd series 15:419–520

    Google Scholar 

  • DiNardo S, Kuner JM, Theis J, O’Farell PH (1985) Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69

    PubMed  CAS  Google Scholar 

  • Dogiel V (1913) Embryologische Studien an Pantopoden. Z wiss Zool 107:575–741

    Google Scholar 

  • Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310

    Google Scholar 

  • Dohle W (1970) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea) I. Die Bildung der Teloblasten und ihrer Derivate. Z Morph Ökol Tiere 67:307–392

    Google Scholar 

  • Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:503–566

    Google Scholar 

  • Dohle W (1979) Vergleichende Entwicklungsgeschichte des Mesoderms bei Articulaten. Fortschr zool Syst Evolutionsf 1:120–140

    Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary Developmental Biology of Crustacea (Crustacean Issues 15). Balkema, Lisse, pp 95–133

    Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104 Suppl.:147–160

    Google Scholar 

  • Donoghue PCJ, Bengtson S, Dong X-P, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442:680–683

    PubMed  CAS  Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87

    PubMed  Google Scholar 

  • Edgecombe GD, Giribet G (2004) Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidae subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci. J Zool Syst Evol Res 42:89–134

    Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Google Scholar 

  • Eriksson BJ, Tait NN (2012) Early development in the velvet worm Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Arthropod Struct Dev 41:483–493

    PubMed  Google Scholar 

  • Fioroni P (1970) Am Dotteraufschluß beteiligte Organe und Zelltypen bei höheren Krebsen; der Versuch einer einheitlichen Terminologie. Zool Jb Anat 87:481–522

    Google Scholar 

  • Fioroni P (1987) Allgemeine und vergleichende Embryologie der Tiere. Springer, Berlin

    Google Scholar 

  • Fischer A, Pabst T, Scholtz G (2010) Germ band differentiation in the stomatopod Gonodactylaceus falcatus and the origin of the stereotyped cell division pattern in Malacostraca (Crustacea). Arthropod Struct Dev 39:411–422

    PubMed  Google Scholar 

  • Fleig R (1990) Engrailed expression and body segmentation in the honeybee Apis mellifera. Roux`s ArchDev Biol 198:467–473

    Google Scholar 

  • Frasch M (1999) Intersecting signaling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 10:61–71

    PubMed  CAS  Google Scholar 

  • Fuchs K (1914) Die Keimblätterentwicklung von Cyclops viridis Jurine. Zool Jb Anat 38:104–156

    Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    PubMed  CAS  Google Scholar 

  • George RY, Strömberg J-O (1985) Development of eggs of Antarctic krill Euphausia superba in relation to pressure. Pol Biol 4:125–133

    Google Scholar 

  • Gerberding M (1994) Superfizielle Furchung, Bildung des Keimstreifs und Differenzierung von Neuroblasten bei Leptodora kindti Focke 1844 (Cladocera, Crustacea). Diplom thesis, Freie Universität Berlin

    Google Scholar 

  • Gerberding M, Browne WE, Patel NH (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129:5789–5801

    PubMed  CAS  Google Scholar 

  • Gilbert SF, Raunio AM (eds) (1997) Embryology: constructing the organism. Sinauer Associates, Sunderland

    Google Scholar 

  • Giribet G, Edgecombe GD, Carpenter JM, D’Haese CA, Wheeler WC (2004) Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects. Org Divers Evol 4:319–340

    Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    PubMed  CAS  Google Scholar 

  • Gorham FP (1895) The cleavage of the egg of Virbius zostericola, Smith—a contribution to crustacean cytogeny. J Morph 11:741–746

    Google Scholar 

  • Grbic M (2003) Polyembryony in parasitic wasps: evolution of a novel mode of development. Int J Dev Biol 47:633–642

    PubMed  Google Scholar 

  • Haget A (1953) Analyse expérimentale des facteurs de la morphogenèse embryonnaire chez le coléoptère Leptinotarsa. Bull Biol Fr Belg 87:123–217

    Google Scholar 

  • Hannibal RL, Price AL, Patel NH (2012) The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 361:427–438

    PubMed  CAS  Google Scholar 

  • Heider K (1889) Die Embryonalentwicklung von Hydrophilus piceus L. Fischer, Jena

    Google Scholar 

  • Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361

    PubMed  CAS  Google Scholar 

  • Hertzel G (1985) Die Embryonalentwicklung von Lithobius forficatus (L.) im Vergleich zur Entwicklung anderer Chilopoden. Dissertation, Pädagogische Hochschule Erfurt-Mühlhausen

    Google Scholar 

  • Hertzler PL, Clark WH (1992) Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accompanied by oriented cell division. Development 116:127–140

    PubMed  CAS  Google Scholar 

  • Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 33:1–244

    Google Scholar 

  • Hickman VV (1937) The embryology of the syncarid crustacean Anaspides tasmaniae. Pap Proc Roy Soc Tasmania 1936:1–35

    Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002c) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol 247:47–61

    PubMed  CAS  Google Scholar 

  • Ivanov PP (1933) Die embryonale Entwicklung von Limulus moluccanus. Zool Jb Anat 56:163–348

    Google Scholar 

  • Jacobs DK, Hughes NC, Fitz-Gibbon ST, Winchella CJ (2005) Terminal addition, the Cambrian radiation and the Phanerozoic evolution of bilaterian form. Evol Dev 7:498–514

    PubMed  Google Scholar 

  • Janssen R (2012) Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Dev Genes Evol 222:299–309

    PubMed  Google Scholar 

  • Janssen R, Prpic N-M, Damen WGM (2006) A review of the correlation of tergites, sternites, and leg pairs in diplopods. Front Zool 2:3; doi:10.1186/1742-9994-3-2

  • Jenner RA (2010) Higher-level crustacean phylogeny: consensus and conflicting hypotheses. Arthropod Struct Dev 39:143–153

    PubMed  Google Scholar 

  • Jura Cz (1965) Embryonic development of Tetrodontophora bielanensis (Waga) (Collembola) from oviposition till germ band formation stage. Acta Biol Cracov Ser Zool 8:141–157

    Google Scholar 

  • Jura Cz, Krzystofowizc A, Kisiel E (1987) Embryonic development of Tetrodontophora bielanensis (Collembola): Descriptive with scanning electron micrographs. In: Ando H, Jura CZ (eds) Recent Advances in Insect Embryology in Japan and Poland. Arthropod Embryolog Soc Japan, Tsukuba, pp 77–124

    Google Scholar 

  • Kaudewitz F (1950) Zur Entwicklungsphysiologie von Daphnia pulex. Roux’ Arch Entwickl Mech 144:410–447

    CAS  Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: Microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39:436–445

    PubMed  Google Scholar 

  • Keller R (2006) Mechanisms of elongation in embryogenesis. Development 133:2291–2302

    PubMed  CAS  Google Scholar 

  • Kimble M, Coursey Y, Ahmad N, Hinsch GW (2002) Behavior of the yolk nuclei during embryogenesis, and development of the midgut diverticulum in the horseshoe crab Limulus polyphemus. Invert Biol 12:365–377

    Google Scholar 

  • Kingsley JS (1892) The embryology of Limulus. J Morph 7:35–66

    Google Scholar 

  • Knoll HJ (1974) Untersuchungen zur Entwicklungsgeschichte von Scutigera coleoptrata L. (Chilopoda). Zool Jb Anat 92:47–132

    Google Scholar 

  • Kohler H-J (1976) Embryologische Untersuchungen an Copepoden: die Entwicklung von Lernaeocera branchialis L. 1767 (Crustacea, Copepoda, Lernaeoida, Lernaeidae). Zool Jb Anat 95:448–504

    Google Scholar 

  • Kozloff EN (2007) Stages of development, from first cleavage to hatching, of an Echinoderes (Phylum Kinorhyncha: Class Cyclorhagida). Cah Biol Mar 48:199–206

    Google Scholar 

  • Krause G (1939) Die Eitypen der Insekten. Biol Zentralbl 59:495–536

    Google Scholar 

  • Kristensen NP (1997) The groundplan and basal diversification of the hexapods. In: Fortey RA, Thomas RH (eds) Arthropod Relationships. Chapman & Hall, London, pp 281–293

    Google Scholar 

  • Kühn A (1912) Die Sonderung der Keimesbezierke in der Entwicklung der Sommereier von Polyphemus pediculus de Geer. Zool Jb Anat 35:243–340

    Google Scholar 

  • Laumann M, Bergmann P, Norton RA, Heethoff M (2010a) First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage. Arthropod Struct Dev 39:276–286

    PubMed  Google Scholar 

  • Laumann M, Norton RA, Heethoff M (2010b) Acarine embryology: inconsistencies, artificial results and misinterpretations. Soil Organ 82:217–235

    Google Scholar 

  • Lawrence PA (1992) The Making of a Fly. Blackwell, Oxford

    Google Scholar 

  • Lerebouillet A (1862) Recherches d’embryologie comparée sur le développement du brochet, de la perche et de l’écrevisse. Mém Acad Sci Inst Fr 17:1–356

    Google Scholar 

  • Linder F (1952) Contributions to the morphology and taxonomy of the Branchiopoda Notostraca, with special reference to the north American species. Proc U S Nat Mus 102:1–69

    Google Scholar 

  • Liu PZ, Kaufman TC (2005) Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev 7:629–646

    PubMed  Google Scholar 

  • Machida R (2006) Evidence from embryology for reconstructing the relationships of hexapod basal clades. Arthropod Syst Phyl 64:95–104

    Google Scholar 

  • Machida R, Nagashima T, Ando H (1990) The early embryonic development of the jumping bristletail Pedetontus unimaculatus Machida (Hexapoda: Microcoryphia, Machilidae). J Morph 206:181–195

    Google Scholar 

  • Malakhov VV, Spiridonov SE (1984) The embryogenesis of Gordius sp. from Turkmenia, with special reference to the position of the Nematomorpha in the animal kingdom. Zool Zh 63:1285–1297 [Russian with English summary]

    Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    PubMed  CAS  Google Scholar 

  • Manton SM (1928) On the embryology of a mysid crustacean Hemimysis lamornae. Phil Trans R Soc B 216:363–463

    Google Scholar 

  • Manton SM (1934) On the embryology of Nebalia bipes. Phil Trans R Soc B 223:168–238

    Google Scholar 

  • Manton SM (1949) Studies on the Onychophora VII. The early embryonic stages of Peripatopsis and some general considerations concerning the morphology and phylogeny of the Arthropoda. Phil Trans R Soc B 233:483–580

    Google Scholar 

  • Manzanares M, Williams TA, Marco R, Garesse R (1996) Segmentation in the crustacean Artemia: engrailed expression studied with an antibody raised against the Artemia protein. Roux`s Arch Dev Biol 205:424–431

    Google Scholar 

  • Marcus E (1929) Zur Embryologie der Tardigraden. Zool Jb Anat 50:333–384

    Google Scholar 

  • Martin BL, Kimelman D (2009) Wnt signaling and the evolution of embryonic posterior development. Curr Biol 19:R215–R219

    PubMed  CAS  Google Scholar 

  • Mayer G, Kato C, Quast B, Chisholm RH, Landman KA, Quinn LM (2010) Growth patterns in Onychophora (velvet worms): lack of a localised posterior proliferation zone. BMC Evol Biol 10:339; doi:10.1186/1471-2148-10-339

  • McMurrich JP (1895) Embryology of the isopod Crustacea. J Morph 11:63–154

    Google Scholar 

  • Meschenmoser M (1996) Dorsal- und Lateralorgane in der Embryonalentwicklung von Peracariden (Crustacea, Malacostraca). Cuvillier Verlag, Göttingen

    Google Scholar 

  • Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27:2451–2464

    PubMed  CAS  Google Scholar 

  • Minelli A (2001) A three-phase model of arthropod segmentation. Dev Genes Evol 211:509–521

    PubMed  CAS  Google Scholar 

  • Minelli A (2005) A morphologist’s perspective on terminal growth and segmentation. Evol Dev 7:568–573

    PubMed  Google Scholar 

  • Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216

    PubMed  Google Scholar 

  • Møller OS, Olesen J, Avenant-Oldewage A, Thompson PF, Glenner H (2008) First maxillae suction discs in Branchiura (Crustacea): development and evolution in light of the first molecular phylogeny of Branchiura, Pentastomida, and other “Maxillopoda”. Arthropod Struct Dev 37:333–346

    PubMed  Google Scholar 

  • Montuy-Gómez D, Gómez-Gutiérrez J, Rodríguez-Jaramillo C, Robinson CJ (2012) Nyctiphanes simplex (Crustacea: Euphausiacea) temporal association of embryogenesis and early larval development with female molt and ovarian cycles. J Plankt Res 34:531–547

    Google Scholar 

  • Morgan TH (1891) A contribution to the embryology and phylogeny of the Pycnogonida. Stud Biol Lab J Hopkins Univ 5:1–76

    Google Scholar 

  • Moritz M (1957) Zur Embryonalentwiclung der Phalangiiden (Opiliones, Palpatores) unter besonderer Berücksichtigung der äußeren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jb Anat 76:331–370

    Google Scholar 

  • Moritz M (1993) Unterstamm Arachnata. In: Gruner H-E (ed) Lehrbuch der speziellen Zoologie, Band I, 4.Teil Arthropoda. Gustav Fischer, Jena, pp. 64–442

    Google Scholar 

  • Müller YMR (1984) Die Embryonalentwicklung von Macrobrachium carcinus (L.) (Malacostraca, Decapoda, Natantia). Zool Jb Anat 112:51–78

    Google Scholar 

  • Müller-Calé K (1913) Die Entwicklung von Cypris incongruens. Zool Jb Anat 36:113–170

    Google Scholar 

  • Nielsen C (2001) Animal Evolution: Interrelationships of the Living Phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (2012) Animal Evolution: Interrelationships of the Living Phyla, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Olesen J (2009) Phylogeny of Branchiopoda (Crustacea): character evolution and contribution of uniquely preserved fossils. Arthr Syst Phyl 67:3–39

    Google Scholar 

  • Osche G (1963) Die systematische Stellung und Phylogenie der Pentastomida–embryologische und vergleichend-anatomische Studien an Reighardia sternae. Z Morph Ökol Tiere 52:487–596

    Google Scholar 

  • Patel NH, Condron BG, Zinn K (1994) Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature 367:429–434

    PubMed  CAS  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation of grasshopper and crayfish. Development 107:201–212

    PubMed  CAS  Google Scholar 

  • Paulus H (2007) Arthropoda. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere. Spektrum, München, pp 438–446

    Google Scholar 

  • Peel AD, Chipman AD, Akam M (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nature Rev Gen 6:905–916

    CAS  Google Scholar 

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphological and 18S rDNA sequences. Evol Dev 3:170–205

    PubMed  CAS  Google Scholar 

  • Pflugfelder O (1962) Lehrbuch der Entwicklungsgeschichte und Entwicklungsphysiologie der Tiere. VEB Gustav Fischer, Jena

    Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1; doi:10.1186/1741-7007-2-1

  • Price AL, Modrell MS, Hannibal RL, Patel NH (2010) Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation. Dev Biol 341:256–266

    PubMed  CAS  Google Scholar 

  • Rathke H (1829) Untersuchungen über Bildung und Entwicklung des Flusskrebses. Leopold Voss, Leipzig

    Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    PubMed  CAS  Google Scholar 

  • Reichenbach H (1886) Studien zur Entwicklungsgeschichte des Flusskrebses. Abhandl Senckenb Naturforsch Gesellsch 14:1–137

    Google Scholar 

  • Reid AL (1996) Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invert Tax 10:663–936

    Google Scholar 

  • Richter S, Olesen J, Wheeler WC (2007) Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics 23:301–336

    Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

    Google Scholar 

  • Samter M (1900) Studien zur Entwicklungsgeschichte der Leptodora hyalina Lillj. Z wiss Zool 63:169–260

    Google Scholar 

  • Sanchez S (1959) Le développement des Pycnogonides et leurs affinités avec les Arachnides. Arch Zool Exp Gén 98:1–102

    Google Scholar 

  • Sander K (1983) The Evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CG (eds) Development and Evolution. Cambridge University Press, Cambridge, pp 137–158

    Google Scholar 

  • Sanders KL, Lee MS (2010) Arthropod molecular divergence times and the Cambrian origin of pentastomids. Syst Biodiv 8:63–74

    Google Scholar 

  • Scheidegger G (1976) Stadien der Embryonalentwicklung von Eupagurus prideauxi Leach (Crustacea, Decapoda Anomura), unter besonderer Berücksichtigung der Darmentwicklung und der am Dotterabbau beteiligten Zelltypen. Zool Jb Anat 95:297–353

    Google Scholar 

  • Schimkewitsch L, Schimkewitsch W (1911) Ein Beitrag zur Entwicklungsgeschichte der Tetrapneumones, Teil I. Bull Acad Imp Sci St Petersb 6th series 5:637–654

    Google Scholar 

  • Schimkewitsch W (1896) Studien über parasitische Copepoden. Z wiss Zool 61:339–362

    Google Scholar 

  • Schimkewitsch W (1903) Über die Entwicklung von Telyphonus caudatus (L.). Zool Anz 26:665–685

    Google Scholar 

  • Scholl G (1963) Embryologische Untersuchungen an Tanaidaceen (Heterotanais oerstedi Kröyer). Zool Jb Anat 80:500–554

    Google Scholar 

  • Scholtz G (1984) Untersuchungen zur Bildung und Differenzierung des postnauplialen Keimstreifs von Neomysis integer Leach (Crustacea, Malacostraca, Peracarida). Zool Jb Anat 112:295–349

    Google Scholar 

  • Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proc R Soc Lond B 239:163-211

    Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux`s Arch Dev Biol 202:36–48

    Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod Relationships. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215

    Google Scholar 

  • Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143

    PubMed  Google Scholar 

  • Scholtz G, Abzhanov A, Alwes F, Biffis C, Pint J (2009a) Development, genes, and decapod evolution. In: Martin JW, Crandall KA, Felder DL (eds) Decapod Crustacean Phylogenetics (Crustacean Issues 18). CRC Press & Taylor and Francis, Boca Raton, pp 31–46

    Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos—a comparative approach. Int J Dev Biol 40:211–220

    PubMed  CAS  Google Scholar 

  • Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38:471–478

    PubMed  CAS  Google Scholar 

  • Scholtz G, Ponomarenko E, Wolff C (2009b) Cirripede cleavage patterns and the origin of the Rhizocephala (Crustacea: Thecostraca). Arthropod Syst Phyl 67:219–228

    Google Scholar 

  • Scholtz G, Wolff C (2002) Cleavage pattern, gastrulation, and germ disc formation of the amphipod crustacean Orchestia cavimana. Contrib Zool 71:9–28

    Google Scholar 

  • Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18. doi:10.1186/2041-9139-2-18

  • Schwartz V (1973) Vergleichende Entwicklungsgeschichte der Tiere. Georg Thieme, Stuttgart

    Google Scholar 

  • Seaver EC, Thamm K, Hill SD (2005) Growth patterns during segmentation in two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 7:312–326

    PubMed  Google Scholar 

  • Seitz K-A (1966) Normale Entwicklung des Arachniden-Embryos Cupiennius salei (Keyserling) und seine Regulationsfähigkeit nach Röntgenbestrahlungen. Zool Jb Anat 83:327–447

    Google Scholar 

  • Shankland M (1999) Anteroposterior pattern formation in the leech embryo. In: Moody SA (ed) Cell lineage and cell fate determination. Academic Press, San Diego, pp 207–224

    Google Scholar 

  • Shear WA, Edgecombe GD (2010) The geological record and phylogeny of Myriapoda. Arthropod Struct Dev 39:174–190

    PubMed  Google Scholar 

  • Sheldon L (1887) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 28:205–237

    Google Scholar 

  • Shiino SM (1942) Studies on the embryonic development of Squilla oratoria de Haan. Mem Coll Sci Kyoto Univ B 28:77–174

    Google Scholar 

  • Shimizu T, Nakamoto A (2001) Segmentation in annelids: cellular and molecular basis for metameric body plan. Zool Sci 18:285–298

    Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265

    Google Scholar 

  • Siewing R (1979) Homology of cleavage-types? Fortschr zool Syst Evolutionsf 1:7–18

    Google Scholar 

  • Sograff N (1883) Materials toward the knowledge of the embryonic development of Geophilus ferrugineus and Geophilus proximus. Izveˆstya Imperatorskago Obshchestva Lyubitelei Estestvoznaniya, Antropologii i Etnografii pri Imperatorskom Moskovskom Universitete 2:1–77 (in Russian)

    Google Scholar 

  • Strömberg JO (1971) Contribution to the embryology of bopyrid isopods with special reference to Bopyrides, Hemiarthrus and Pseudione (Isopoda, Epicaridea). Sarsia 47:1–46

    Google Scholar 

  • Tardent P (1978) Coelenterata, Cnidaria. In: Seidel F (ed) Morphogenese der Tiere, Erste Reihe: Deskriptive Morphogenese, Lieferung I: A-I. VEB Gustav Fischer, Jena

    Google Scholar 

  • Taube E (1909) Beiträge zur Entwicklungsgeschichte der Euphausiiden. I. Die Furchung des Eies bis zur Gastrulation. Z wiss Zool 92:427–464

    Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225

    Google Scholar 

  • Tiegs OW (1947) The development and affinities of the Pauropoda, based on a study of Pauropus silvaticus. Q J Microsc Sci 88:275–336

    Google Scholar 

  • Tojo K, Machida R (1998) Early embryonic development of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae). J Morph 238:327–335

    Google Scholar 

  • Turquier Y (1967) L’embryogenése de Trypetesa nassarioides Turquier (Cirripède Acrothoracique). Ses rapports avec celle des autres Cirripèdes. Arch Zool Exp Gén 108:111–137

    Google Scholar 

  • Ungerer P, Scholtz G (2009) Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa? Zoomorphology 128:263–274

    Google Scholar 

  • Vollmer C (1912) Zur Entwicklung der Cladoceren aus dem Dauerei. Z wiss Zool 102:646–700

    Google Scholar 

  • von Baldass F (1941) Entwicklung von Daphnia pulex. Zool Jb Anat 67:1–60

    Google Scholar 

  • von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: Support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

    Google Scholar 

  • von Wistinghausen C (1891) Untersuchungen über die Entwicklung von Nereis dumerilii. Mitt Zool Stat Neapel 10:41–74

    Google Scholar 

  • Waloszek D, Maas A (2005) The evolutionary history of crustacean segmentation: a fossil-based perspective. Evol Dev 7:515–527

    PubMed  Google Scholar 

  • Weldon WFR (1892) The formation of the germ-layers in Crangon vulgaris. Q J Microsc Sci 33:343–363

    Google Scholar 

  • Wennberg SA, Janssen R, Budd GE (2008) Early embryonic development of the priapulid worm Priapulus caudatus. Evol Dev 10:326–338

    PubMed  Google Scholar 

  • Weygoldt P (1960a) Mehrphasige Gastrulation bei Arthropoden. Zool Anz 164:381–395

    Google Scholar 

  • Weygoldt P (1960b) Embryonaluntersuchungen an Ostracoden. Die Entwicklung von Cyprideis litoralis. Zool Jb Anat 78:369–426

    Google Scholar 

  • Weygoldt P (1963) Grundorganisation und Primitiventwicklung bei Articulaten. Zool Anz 171:363–376

    Google Scholar 

  • Weygoldt P (1964) Vergleichend-embryologische Untersuchungen an Pseudoskorpionen (Chelonethi). Z Morph Ökol Tiere 54:1–106

    Google Scholar 

  • Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geißelspinne Tarantula marginemaculata C. L. Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphologie 82:137–199

    Google Scholar 

  • Weygoldt P (1979) Gastrulation in arthropods? Fortschr zool Syst Evolutionsf 1:73–81

    Google Scholar 

  • Weygoldt P (1986) Arthropod interrelationships–the phylogenetic-systematic approach. Z Zool Syst Evolut-forsch 24:19–35

    Google Scholar 

  • Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. II. Cladogramme und die Entfaltung der Chelicerata. Morphologische Untersuchungen. Z zool Syst Evolut-forsch 17:117–200

    Google Scholar 

  • Williams T, Blachuta B, Hegna TA, Nagy LM (2012) Decoupling elongation and segmentation: Notch involvement in anostracan crustacean segmentation. Evol Dev 14:372–382

    PubMed  CAS  Google Scholar 

  • Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219:545–564

    PubMed  Google Scholar 

  • Wolff C, Hilbrant M (2011) The embryonic development of the Central American wandering spider Cupiennius salei. Front Zool 8:15. doi:10.1186/1742-9994-8-15

  • Wolff C, Scholtz G (2002) Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58

    PubMed  CAS  Google Scholar 

  • Zantke J, Wolff C, Scholtz G (2008) Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology 127:21–36

    Google Scholar 

  • Zehnder H (1934) Über die Embryonalentwicklung des Flusskrebses. Acta Zool 15:261–408

    Google Scholar 

  • Zilch R (1974) Die Embryonalentwicklung von Thermosbaena mirabilis Monod (Crustacea, Malacostraca, Pancarida). Zool Jb Anat 93:462–576

    Google Scholar 

  • Zilch R (1979) Cell lineage in arthropods? Fortschr zool Syst Evolutionsforsch 1:19–41

    Google Scholar 

  • Zrzavý J, Hypša V, Vlášková M (1998) Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets. In: Fortey RA, Thomas RH (eds) Arthropod Relationships. Chapman & Hall, London, pp 97–107

    Google Scholar 

Download references

Acknowledgments

The authors thank the editors for the invitation to contribute to this book. We are grateful to Frederike Alwes and Petra Ungerer for a number of photographs. The valuable comments of Carlo Brena and an anonymous reviewer are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Scholtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scholtz, G., Wolff, C. (2013). Arthropod Embryology: Cleavage and Germ Band Development. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_4

Download citation

Publish with us

Policies and ethics