Skip to main content

Water-to-Land Transitions

  • Chapter
  • First Online:
Book cover Arthropod Biology and Evolution

Abstract

Arthropods are, by a considerable margin, the most species-rich group of animals alive today and have long been a major component of the Earth’s biodiversity. Exact counts of the total number of species are not easy to come by, but Zhang (2011) offered a recent summary. Together the ca. 1,023,559 described living species of hexapods, 11,885 myriapods and 110,615 arachnids—most of which live on land—massively outnumber the ca. 66,914 recorded crustaceans, 1,322 sea spiders and the four species of horseshoe crab. Put bluntly, in terms of raw species numbers, the primarily terrestrial lineages (Hexapoda, Myriapoda, Arachnida) outnumber the primarily aquatic ones (‘Crustacea’, Pycnogonida, Xiphosura) by a factor of almost seventeen to one. In fairness, there is a degree of bias in these figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almond JE (1985) The Silurian-Devonian fossil record of the Myriapoda. Phil Trans R Soc B 309:227–237

    Article  Google Scholar 

  • Anderson LI, Trewin N (2003) An Early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland. Palaeontology 46:467–509

    Article  Google Scholar 

  • Armonies W, Reise K (2000) Faunal diversity across a sandy shore. Mar Ecol Prog Ser 196:49–57

    Article  Google Scholar 

  • Bartsch I (1989) Marine mites (Halacaroidea: Acari): a geographical and ecological survey. Hydrobiologia 178:21–42

    Article  Google Scholar 

  • Bayartogtokh B, Chatterjee T (2010) Oribatid mites from marine littoral and freshwater habitats in India with remarks on world species of Thalassozetes (Acari: Oribatida). Zool Stud 49:839–854

    Google Scholar 

  • Benton MJ (2010) The origins of modern biodiversity on land. Phil Trans R Soc B 365:3667–3679

    Article  PubMed  Google Scholar 

  • Bousfield EL (1983) An updated phyletic classification and palaeohistory of the Amphipoda. In: Schram F (ed) Crustacean Phylogeny (Crustacean Issues 1). Balkema, Rotterdam, pp 257–277

    Google Scholar 

  • Bousfield EL, Poinar GO Jr. (1994) A new terrestrial amphipod from Tertiary amber deposits of Chiapas province, southern Mexico. Hist Biol 7:105–114

    Google Scholar 

  • Braddy SJ (2004) Ichnological evidence for the arthropod invasion of land. Fossils Strata 51:136–140

    Google Scholar 

  • Braddy SJ, Briggs DEG (2002) New Lower Permian nonmarine arthropod trace fossils from New Mexico and South Africa. J Palaeont 76:546–557

    Article  Google Scholar 

  • Cannicci S, Simoni R, Giomi F (2011) Role of the embryo in crab terrestrialization: an ontogenetic approach. Mar Ecol Prog Ser 430:121–131

    Article  Google Scholar 

  • Carefoot T, Taylor B (1995) Ligia: a prototypal terrestrial isopod. In: Alikhan MM (ed) Terrestrial Isopod Biology (Crustacean Issues 9). Balkema, Rotterdam, pp 47–60

    Google Scholar 

  • Claridge MF, Lyon AG (1961) Lung-books in the Devonian Palaeocharinidae (Arachnida). Nature 191:1190–1191

    Article  Google Scholar 

  • Collette JH, Gass KC, Hagadorn JW (2012) Protichnites eremita unshelled? experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies. J Palaeont 86:442–454

    Article  Google Scholar 

  • Condé B (1965) Présence de Palpigrades dans le milieu interstitial littoral. C r Acad Sci Paris 261:1898–1900

    Google Scholar 

  • Dalingwater JE (1985) Biomechanical approaches to eurypterid cuticles and chelicerate exoskeletons. Trans R Soc Edinb Earth Sci 76:359–364

    Article  Google Scholar 

  • Davies NS, Rygel MC, Gibling MR (2010) Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): implications for the history of life on land. Palaios 25:527–539

    Article  Google Scholar 

  • De Deckker P (1983) Terrestrial ostracods in Australia. Austr Mus Mem 18:87–100

    Article  Google Scholar 

  • Diesel R, Schubart CD, Schuh M (2000) A reconstruction of the invasion of land by Jamaican crabs (Grapsidae: Sesarminae). J Zool 250:141–160

    Article  Google Scholar 

  • Dohle W (1976) Zur Frage des Nachweises von Homologien durch die komplexen Zell- und Teilungsmuster in der embryonalen Entwicklung höherer Krebse (Crustacea, Malacostraca, Peracarida). Sitzungsber Ges Naturf Freunde Berlin 16:125–144

    Google Scholar 

  • Dohle W (1988) Myriapoda and the ancestry of insects. Manchester Polytechnic, Manchester

    Google Scholar 

  • Donovan SK, Dixon HL (1998) A fossil land crab from the late Quaternary of Jamaica (Decapoda, Brachyura, Gecarcinidae). Crustaceana 71:824–826

    Article  Google Scholar 

  • Dunlop JA, Anderson LI, Kerp H, Hass H (2004) A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Trans R Soc Edinb Earth Sci 94:341–354

    Google Scholar 

  • Dunlop JA, Selden PA (2009) Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Exp Appl Acarol 48:183–197

    Article  PubMed  Google Scholar 

  • Edwards D, Selden PA, Richardson JB, Axe L (1995) Coprolites as evidence for plant–animal interaction in Siluro-Devonian terrestrial ecosystems. Nature 377:329–331

    Article  CAS  Google Scholar 

  • Engel MS, Grimaldi D (2004) New light shed on the oldest insect. Nature 427:627–630

    Article  PubMed  CAS  Google Scholar 

  • Farley R (2012) Ultrastructure of book gill development in embryos and first instars of the horseshoe crab Limulus polyphemus L (Chelicerata, Xiphosura). Front Zool 9:4. doi:10.1186/1742-9994-9-4

  • Farrelly CA, Greenaway P (1992) Morphology and ultrastructure of the gills of terrestrial crabs (Crustacea, Gecarcinidae and Grapsidae): adaptations for air breathing. Zoomorphology 112:39–49

    Article  Google Scholar 

  • Farrelly CA, Greenaway P (1993) Land crabs with smooth lungs: Grapsidae, Gecarcinidae, and Sundathelphusidae ultrastructure and vasculature. J Morph 215:245–260

    Article  Google Scholar 

  • Farrelly CA, Greenaway P (2005) The morphology and vasculature of the respiratory organs of terrestrial hermit crabs (Coenobita and Birgus): gills, branchiostegal lungs and abdominal lungs. Arthropod Struct Dev 34:63–87

    Article  Google Scholar 

  • Fayers SR, Trewin NH (2005) A hexapod from the Early Devonian Windyfield Chert, Rhynie, Scotland. Palaeontology 48:1117–1130

    Article  Google Scholar 

  • Garrouste R, Clément G, Nel P, Engel MS, Grandcolas P, D’Haese C, Lagebro L, Denayer J, Gueriau P, Lafaite P, Olive S, Prestianni C, Nel A (2012) A complete insect from the Late Devonian period. Nature 488:82–85

    Article  PubMed  CAS  Google Scholar 

  • Garwood RJ, Edgecombe GD (2011) Early terrestrial animals, evolution and uncertainty. Evol Edu Outreach 4:489–501

    Article  Google Scholar 

  • Genise JF, Bedatou E, Melchor RN (2008) Terrestrial crustacean breeding trace fossils from the Cretaceous of Patagonia (Argentina): palaeobiological and evolutionary significance. Palaeogeo Paleoclim Palaeoecol 264:128–139

    Article  Google Scholar 

  • Glenner H, Thomsen PF, Hebsgaard MB, Sørensen MV, Willerslev E (2006) The origin of insects. Science 314:1883–1884

    Article  PubMed  CAS  Google Scholar 

  • Greenaway P (2003) Terrestrial adaptations in the Anomura (Crustacea: Decapoda). Mem Mus Vict 60:13–26

    Google Scholar 

  • Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Miss Bot Gard 86:373–406

    Article  Google Scholar 

  • Gruner H-E (1993) Klasse Crustacea, Krebse. In: Gruner H-E (ed) Lehrbuch der speziellen Zoologie, Band I, 4.Teil Arthropoda. Gustav Fischer, Jena, pp 448–1030

    Google Scholar 

  • Haas F, Waloszek D, Hartenberger R (2003) Devonohexapodus bocksbergensis, a new marine hexapod from the Lower Devonian Hunsrück Slates, and the origin of Atelocerata and Hexapoda. Organ Divers Evol 3:39–54

    Article  Google Scholar 

  • Hilken G (1997) Vergleich von Tracheensystemen unter phylogenetischem Aspekt. Verh Naturwiss Ver Hamburg 37:5–94

    Google Scholar 

  • Hirst S (1923) On some arachnid remains from the Old Red Sandstone (Rhynie Chert bed, Aberdeenshire). Ann Mag Nat Hist 12(70):455–474

    Google Scholar 

  • Hirst S, Maulik S (1926) On some arthropod remains from the Rhynie Chert (Old Red Sandstone). Geol Mag 63:69–71

    Article  Google Scholar 

  • Hoese B (1981) Morphologie und Funktion des Wasserleitungssystems der terrestrischen Isopoden (Crustacea, Isopoda, Oniscoidea). Zoomorphology 98:135–167

    Article  Google Scholar 

  • Hoese B (1983) Struktur und Entwicklung der Lungen der Tylidae (Crustacea, Isopoda, Oniscoidea). Zool Jb Anat 109:487–501

    Google Scholar 

  • Hoese B, Janssen HH (1989) Morphological and physiological studies on the marsupium of terrestrial isopods. Monit zool ital (NS) 4:153–173

    Google Scholar 

  • Jeram AJ, Selden PA, Edwards D (1990) Land animals from the Silurian: arachnids and myriapods from Shropshire, England. Science 250:658–661

    Article  PubMed  CAS  Google Scholar 

  • Johnson EW, Briggs DEG, Suthren RJ, Wright JL, Tunnicliff SP (1994) Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District. Geol Mag 131:395–406

    Article  Google Scholar 

  • Judson MLI (2012) Reinterpretation of Dracochela deprehendor (Arachnida: Pseudoscorpiones) as a stem-group pseudoscorpion. Palaeont 55:261–283

    Article  Google Scholar 

  • Kamenz C, Dunlop JA, Scholtz G, Kerp H, Hass H (2008) Microanatomy of Early Devonian book lungs. Biol Lett 4:212–215

    Article  PubMed  Google Scholar 

  • Kamenz C, Staude A, Dunlop JA (2011) Sperm carriers in Silurian sea scorpions. Naturwissenschaften 98:889–896

    Article  PubMed  CAS  Google Scholar 

  • Kenrick P, Wellman CH, Schneider H, Edgecombe GD (2012) A timeline for terretrialization: consequences for the carbon cycle in the Palaeozoic. Phil Trans R Soc B 367:519–536

    Article  PubMed  Google Scholar 

  • Kethley JB, Norton RA, Bonamo PM, Shear WA (1989) A terrestrial alicorhagiid mite (Acari: Acariformes) from the Devonian of New York. Micropaleontology 35:367–373

    Article  Google Scholar 

  • Kingsley JS (1885) Notes on the embryology of Limulus. Q J Microsc Sci 25:521–576

    Google Scholar 

  • Kjellesvig-Waering EN (1986) A restudy of the fossil Scorpionida of the world. Palaeontographica Am 55:1–287

    Google Scholar 

  • Klok CJ, Mercer RD, Chown SL (2002) Discontinuous gas-exchange and its convergent evolution in tracheated arthropods. J Exp Biol 205:1019–1029

    PubMed  Google Scholar 

  • Kraus O, Brauckmann C (2003) Fossil giants and surviving dwarfs. Arthropleurida and Pselaphognatha (Atelocerata, Diplopoda): characters, phylogenetic relationships and construction. Verh naturwiss Ver Hamburg (NF) 40:5–50

    Google Scholar 

  • Kraus O, Kraus M (1994) Phylogenetic system of the Tracheata (Mandibulata): on “Myriapoda”–Insecta interrelationships, phylogenetic age and primary ecological niches. Verh naturwiss Ver Hamburg (NF) 34:5–31

    Google Scholar 

  • Kühl G, Bergmann A, Dunlop JA, Garwood RJ, Rust J (2012) Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück Slate of Germany. Palaeontology 55:775–787

    Article  Google Scholar 

  • Kühl G, Rust J (2009) Devonohexapodus bocksbergensis is a synonym of Wingertshellicus backesi (Euarthropoda)—no evidence for marine hexapods living in the Devonian Hunsrück Sea. Org Divers Evol 9:215–231

    Article  Google Scholar 

  • Labandeira CC, Beall BS, Hueber FM (1988) Early insect diversification: evidence from a Lower Devonian bristletail from Québec. Science 242:913–916

    Article  Google Scholar 

  • Laurie M (1899) On a Silurian scorpion and some additional eurypterid remain from the Pentland Hills. Trans R Soc Edinb 39:575–590

    Article  Google Scholar 

  • Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583

    Article  Google Scholar 

  • Little C (1990) The Terrestrial Invasion—an Ecophysiological Approach to the Origins of Land Animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Macnaughton RB, Cole JM, Dalrymple RW, Braddy SJ, Briggs DEG, Lukie TD (2002) First steps on land: arthropod trackways in Cambrian–Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30:391–394

    Article  Google Scholar 

  • Malz H (1964) Kouphichnium walchi. Die Geschichte einer Fährte und ihres Tieres. Nat Mus 94:81–97

    Google Scholar 

  • Manning PL, Dunlop JA (1995) The respiratory organs of eurypterids. Palaeontology 38:287–297

    Google Scholar 

  • Manton SM (1977) The Arthropoda: Habits, Functional Morphology, and Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Morrissey LB, Hiller RD, Marriott SB (2012) Late Silurian and early Devonian terrestrialization: ichnological insights from the Lower Old Red Sandstone of the Anglo-Welsh Basin, U.K. Palaeogeog Palaeoclim Palaeoecol 337–338:194–215

    Article  Google Scholar 

  • Naruse T, Karasawa H, Shokita S, Tanaka T, Moriguchi M (2004) A first fossil record of the terrestrial crab, Geothelphusa tenuimanus (Miyake and Minei 1965) (Decapoda, Brachyura, Potamidae) from Okinawa Island, Central Ryukyus, Japan. Crustaceana 76:121–1218

    Google Scholar 

  • Norton RA, Bonamo PN, Grierson JD, Shear WA (1988) Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol 62:259–269

    Google Scholar 

  • Olesen J (2009) Phylogeny of Branchiopoda (Crustacea) – character evolution and contribution of uniquely preserved fossils. Arthrop Syst Phylog 67:3–39

    Google Scholar 

  • Paulay G, Starmer J (2011) Evolution, insular restriction, and extinction of oceanic land crabs, exemplified by the loss of an endemic Geograpsus in the Hawaiian Islands. PLoS ONE 6(5):e19916. doi:10.1371/journal.pone.0019916

    Article  PubMed  CAS  Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: Molecular phylogeny and divergence times among arthropods. BMC Biology 2:1; doi:10.1186/1741-7007-2-1

  • Poinar GO Jr., Kerp H, Hass H (2008) Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology 10:9–14

    Article  Google Scholar 

  • Poschmann M, Anderson LI, Dunlop JA (2005) Chelicerate arthropods, including the oldest phalangiotarbid arachnid, from the Early Devonian (Siegenian) of the Rhenish Massif, Germany. J Paleontol 79:110–124

    Article  Google Scholar 

  • Poschmann M, Braddy SJ (2010) Eurypterid trackways from early Devonian tidal facies of Alken an der Mosel (Rheinisches Schiefergebirge, Germany) Palaeobiodivers Palaeoenvir 90:111–124

    Google Scholar 

  • Poschmann M, Dunlop JA, Kamenz C, Scholtz G (2008) The Lower Devonian scorpion Waeringoscorpio and the respiratory nature of its filamentous structures, with a description of a new species from the Westerwald area, Germany. Paläont Ztschr 82:418–436

    Article  Google Scholar 

  • Prokop J, Nel A, Hoch I (2005) Discovery of the oldest known Pterygota in the Lower Carboniferous of the Upper Silesian Basin in the Czech Republic (Insecta: Archaeorthoptera). Geobios 38:383–387

    Article  Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2004) Phylogeny of basal hexapod lineages and estimates of divergence times. Ann Entomol Soc Am 97:411–419

    Article  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome. Mol Phyl Evol 61:880–887

    Article  Google Scholar 

  • Retallack GJ, Feakes CR (1987) Trace fossil evidence for Late Ordovician animals on land. Science 235:61–63

    Article  PubMed  CAS  Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

    Article  Google Scholar 

  • Ripper W (1931) Versuch einer Kritik der Homologiefrage der Arthropodentracheen. Z wiss Zool 138:303–369

    Google Scholar 

  • Rolfe WDI (1985) Early terrestrial arthropods: A fragmentary record. Phil Trans R Soc B 309:207–218

    Article  Google Scholar 

  • Sanders K, Lee MSY (2010) Arthropod molecular divergence times and the Cambrian origin of pentastomids. Syst Biodivers 8:63–74

    Article  Google Scholar 

  • Schaefer I, Norton RA, Scheu S, Maraun M (2010) Arthropod colonization of land – linking fossils in oribartid mites (Acari, Oribatida). Mol Phyl Evol 57:113–121

    Article  CAS  Google Scholar 

  • Schawaller W, Shear WA, Bonamo PM (1991) The first Paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida). Amer Mus Novit 3009:1–17

    Google Scholar 

  • Schmalfuss H (1978) Ligia simony: a model for the evolution of terrestrial isopods. Stuttg Beitr Naturk A 317:1–5

    Google Scholar 

  • Schmidt C (2008) Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthropod Syst Phyl 66:191–226

    Google Scholar 

  • Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): Evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology 109:2–13

    Article  PubMed  Google Scholar 

  • Scourfield DJ (1940) The oldest known fossil insect (Rhyniella praecursor Hirst and Maulik). Further details from additional specimens. Proc Linn Soc 152:113–131

    Article  Google Scholar 

  • Selden PA (1985) Eurypterid respiration. Phil Trans R Soc B 309:209–226

    Article  Google Scholar 

  • Selden PA (2001) Terrestrialization (invertebrates). In:Briggs DEG, Crowther PR (eds). Palaeobiology II. Blackwell, Oxford, 71–74

    Google Scholar 

  • Selden PA (2012) Terrestrialisation (Precambrian–Devonian) (Version 3.0).In: Encyclopedia of Life Sciences. Wiley, Chichester.doi: 10.1002/9780470015902.a0001641.pub3

  • Selden PA, Edwards D (1989) Chapter 6. Colonisation of the land. In: Allen KC, Briggs DEG (eds) Evolution and the Fossil Record. Belhaven, London, pp 122–152

    Google Scholar 

  • Selden PA, Jeram AJ (1989) Palaeophysiology of terrestrialisation in the Chelicerata. Trans R Soc Edinb Earth Sci 80:303–310

    Article  Google Scholar 

  • Selden PA, Shear WA, Sutton MD (2008) Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc Natl Acad Sci USA 105:20781–20785

    Article  PubMed  CAS  Google Scholar 

  • Shear WA (1991) The early development of terrestrial ecosystems. Nature 351:283–289

    Article  Google Scholar 

  • Shear WA, Bonamo PM (1988) Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State USA, and the phylogeny of centiped orders. Amer Mus Novitat 2927:1–30

    Google Scholar 

  • Shear WA, Bonamo PM, Grierson JD, Rolfe WDI, Smith EL, Norton RA (1984) Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. Science 224:492–494

    Article  PubMed  CAS  Google Scholar 

  • Shear WA, Gensel PG, Jeram AJ (1989) Fossils of large terrestrial arthropods from the Lower Devonian of Canada. Nature 384:555–557

    Article  Google Scholar 

  • Shear WA, Jeram AJ, Selden PA (1998) Centiped legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and North America. Amer Mus Novitat 3231:1–16

    Google Scholar 

  • Shear WA, Kukalová-Peck J (1990) The ecology of Palaeozoic terrestrial arthropods: the fossil evidence. Can J Zool 68:1807–1834

    Article  Google Scholar 

  • Shear WA, Selden PA (1995) Eoarthropleura (Arthropoda, Arthropleurida) from the Silurian of Britain and the Devonian of North America. N Jahrb Geol Paläont Abh 196:347–375

    Google Scholar 

  • Shear WA, Selden PA (2001) Rustling in the undergrowth: animals in early terrestrial ecosystems. In: Gensel PG, Edwards D (eds) Plants invade the land: Evolutionary and environmental perspectives. Columbia University Press, New York, pp 29–51

    Google Scholar 

  • Shear WA, Selden PA, Rolfe WDI, Bonamo PM, Grierson JD (1987) New terrestrial arachnids from the Devonian of Gilboa, New York. Amer Mus Novitat 2901:1–74

    Google Scholar 

  • Stensmyr MC, Erland S, Hallberg E, Wallén R, Greenaway P, Hansson BS (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15:116–121

    Article  PubMed  CAS  Google Scholar 

  • Størmer L (1970) Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 1: Arachnida. Senckenberg Leth 51:335–369

    Google Scholar 

  • Størmer L (1976) Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 5: Myriapoda and additional forms, with general remarks on the fauna and problems regarding invasion of land by arthropods. Senckenberg Leth 57:87–183

    Google Scholar 

  • Strother PK, Al-Hajri S, Traverse A (1996) New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology 24:55–58

    Article  Google Scholar 

  • Strother PK, Wood GD, Taylor WA, Beck JH (2004) Middle Cambrian cryptospores and the origin of land plants. Mem Ass Australas Palaeontol 29:99–113

    Google Scholar 

  • Thibaud J-M (2007) Recent advances and synthesis in biodiversity and biogeography of arenicolous Collembola. Ann soc Entomol France NS 43:181–185

    Google Scholar 

  • Tillyard RJ (1928) Some remarks on the Devonian fossil insects from the Rhynie chert beds, Old Red Sandstone. Trans Ent Soc Lond 76:65–71

    Article  Google Scholar 

  • Türkay M (1987) Landkrabben. Nat Mus 117:143–150

    Google Scholar 

  • Van Roy P, Orr PJ, Botting JP, Muir LA, Vinter J, Lefebvre B, el Hariri K, Briggs DEG (2010) Ordovician faunas of Burgess Shale type. Nature 465:215–218

    Article  PubMed  CAS  Google Scholar 

  • Villani MG, Allee LL, Díaz A, Robbins PS (1999) Adaptive strategies of edaphic arthropods. Ann Rev Entomol 44:233–256

    Article  CAS  Google Scholar 

  • von Reumont B, Burmester T (2010) Remipedia and the evolution of hexapods. In: Encyclopedia of Life Sciences (ELS). Wiley, Chichester. doi/10.1002/9780470015902.a0022862

  • von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

    Article  CAS  Google Scholar 

  • Walker SE, Holland SM, Gardiner L (2003) Coenobichnus currani (new ichnogenus and ichnospecies): fossil trackway of a land hermit crab, early Holocene, San Salvador, Bahamas. J Paleontol 77:576–582

    Article  Google Scholar 

  • Warburg MR (2012) Pre-and post-parturial aspects of scorpion reproduction: a review. Eur J Entomol 109:139–146

    Google Scholar 

  • Wilson HM (2006) Juliformian millipedes from the Lower Devonian of Euramerica: implications for the timing of millipede cladogenesis in the Paleozoic. J Paleontol 80:638–649

    Article  Google Scholar 

  • Wilson HM, Anderson LI (2004) Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. J Paleontol 78:169–184

    Article  Google Scholar 

  • Wilson HM, Shear WA (2000) Microdecemplicida, a new order of minute arthropleurideans (Arthropoda, Myriapoda) from the Devonian of New York State, U.S.A. Trans R Soc Edinb Earth Sci 90:351–375

    Article  Google Scholar 

  • Witte H, Döring D (1999) Canalized pathways of change and constraints in the evolution of reproductive modes of microarthropods. Exp Appl Acarol 23:181–216

    Article  Google Scholar 

  • Wright JL, Quinn L, Briggs DEG, Williams SH (1995) A subaerial arthropod trackway from the upper Silurian Clam Bank formation of Newfoundland. Can J Earth Sci 32:304–313

    Article  Google Scholar 

  • Zeh DW, Zeh JA, Smith RL (1989) Ovipositors, amnions and eggshell architecture in the diversification of terrestrial arthropods. Quart Rev Biol 64:147–168

    Article  Google Scholar 

  • Zhang Z-Q (2011) Phylum Arthropoda von Siebold, 1848. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 4138:99–103

    Google Scholar 

Download references

Acknowledgments

We thank C. Oliver Coleman for advice on fossil amphipods; and Lyall Anderson, Wolfgang Dohle, Diane Edwards, Hagen Hass, Rob Hillier, Carsten Kamenz, Andrew Jeram and Lance Morrissey for making images used here available. The editors and a reviewer provided valuable comments on an earlier version. PAS’s visit to Berlin was funded by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Dunlop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dunlop, J.A., Scholtz, G., Selden, P.A. (2013). Water-to-Land Transitions. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_16

Download citation

Publish with us

Policies and ethics