Skip to main content

Pharmacology of Detrusor Activity

  • Chapter
  • First Online:
Biomechanics of the Human Urinary Bladder

Abstract

The majority of pharmacological agents used in clinical practice acts to alter the processes responsible for transmission, by facilitating or inhibiting: (1) release, (2) enzymatic degradation of the neurotransmitter or modulator, (3) function of specific postsynaptic receptors, (4) second messenger system, or (5) intracellular regulatory pathways. For example, N-type calcium ion channel blockers—derivatives of ω-conopeptides—interfere with the dynamics of cytosolic Ca 2+ i in the presynaptic nerve terminal. The decreased Ca 2+ i concentration prevents activation of calmodulin protein and movement of vesicles containing neurotransmitters toward to presynaptic membrane. Chemical agents that facilitate cholinergic and adrenergic neurotransmission can inhibit true and pseudo-acetylcholinesterase, monoamine oxidase, and catechol-O-methyltransferase enzymes in the synaptic cleft.

If (an experimentalist) had a needle to find in a haystack, he would proceed at once with the diligence of the bee to examine straw after straw until he found the object of his search…. A little theory and calculation would have saved him ninety per cent of his labor.

N. Tesla.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apostolidis A, Dasgupta P, Denis P, Elneil S, Fowler C, Giannantoni A, Karsenty G, Schulte-Baukloh H, Schurch B, Wyndaele JJ (2009) Recommendations of the use of botulinum toxin in the treatment of lower urinary tract disorders and pelvic floor dysfunctions: a European consensus report. Eur Urol 55:100–120

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino G, Condino AM, Gallinari P, Franceschetti GP, Tonini M (2006) Characterization of prejunctional serotonin receptors modulating [3H] acetylcho-line release in the human detrusor. J Pharmac Exp Ther 316(1):129–135

    Article  Google Scholar 

  • Heitman LH, Mulder-Krieger T, Spanjersberg RF, von Frijtag Drabbe Kunzel JK, Dalpaiz A, Ijzerman AP (2006) Allosteric modulation, thermodynamics and binding to wild-type and mutant (T277A) adenosine A1 receptors of LUF5831, a novel nonadenosine-like agonist. Br J Pharmacol 147(5):533–541

    Article  PubMed  CAS  Google Scholar 

  • Hristov KL, Cui X, Brown SM, Liu L, Kellett WF, Petkov GV (2008) Stimulation of β3-adrenoceptors relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+- activated K+ channels. Am J Physiol Cell Physiol 295(5):C1344–C1353

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2004) Principles: receptor theory and pharmacology. Trends Pharmacol Sci 25:186–192

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochem 5(1):365–368

    Article  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Sacco E, Pinto F, Bassi P (2008) Emerging pharmacological targets in overactive bladder therapy: experimental and clinical evidences. Int Urogynecol J 19:583–598

    Article  Google Scholar 

  • Staskin DR, Chawla RK, Oefelein MG (2011) Pharmacodynamics of overactive bladder drugs: shifting the curve. Curr Bladder Dysfunct Rep 6:51–63

    Article  Google Scholar 

  • Stewart WF, Van Rooyen JB, Cundiff GW, Abrams P, Herzog AR, Corey R, Hunt TL, Wein AJ (2003) Prevalence and burden of overactive bladder in the Unites States. World J Urol 20:327–336

    PubMed  CAS  Google Scholar 

  • Stockton JM, Birdstall NJM, Burgen ASV, Hulme EC (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23:551–557

    PubMed  CAS  Google Scholar 

  • Strachan RT, Ferrara G, Roth BL (2006) Screening teh receptorome: an efficient approach for drug discovery and target validation. Drug Discov Today 11:708–716

    Article  PubMed  CAS  Google Scholar 

  • Svalø J, Hansen HH, Rønn LCB, Sheykhzade M, Munro G, Rode F (2012) Kv7 positive modulators reduce detrusor overactivity and increase bladder capacity in rats. Basic Clin Pharmac Toxic 110:145–153

    Article  Google Scholar 

  • Tucek S, Musilkova J, Nedoma J, Proska J, Shelkovnikov S, Vorlicek J (1990) Positive cooperativity in the binding of alcuronium and N-methylscopolamine to muscarinic acetylcholine receptos. Mol Pharmacol 38:674–680

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roustem N. Miftahof .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miftahof, R.N., Nam, H.G. (2013). Pharmacology of Detrusor Activity. In: Biomechanics of the Human Urinary Bladder. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36146-3_9

Download citation

Publish with us

Policies and ethics