Skip to main content

Investigations into Biomechanics of the Bladder

  • Chapter
  • First Online:
Biomechanics of the Human Urinary Bladder
  • 903 Accesses

Abstract

A knowledge of the mechanical properties of the tissue of the bladder wall is crucial for the integration of motor functions into a biologically plausible biomechanical model. The combined study of urine flow in the bladder, the urinary sphincter, and the urethra is called urodynamics.

At each stage entirely new laws, concepts, and generalizations are necessary, requiring inspiration and creativity to just as great a degree as in the previous one.

P. Anderson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RS (1971) Mechanical properties of the urinary bladder. Am J Physiol 220:1413–1421

    PubMed  CAS  Google Scholar 

  • Alexander RS (1976) Series elasticity of urinary bladder smooth muscle. Am J Physiol 231:1337–1342

    PubMed  CAS  Google Scholar 

  • Andersson KE, Kronström A, Bjerle P (1989) Viscoelastic properties of the normal human bladder. Scand J Urol Nephrol 23:115–120

    Article  PubMed  CAS  Google Scholar 

  • Ballaro A, Mundy AR, Fry CH, Craggs MD (2001) A new approach to recording the electromyographic activity of detrusor smooth muscle. J Urol 166(5):1957–1961

    Article  PubMed  CAS  Google Scholar 

  • Bastiaanssen EHC, van Leeuwen JL, Vanderschoot J, Redert PA (1996a) A myocybernetic model of the lower urinary tract. J Theor Biol 178:113–133

    Article  PubMed  CAS  Google Scholar 

  • Bastiaanssen EHC, Vanderschoot J, van Leeuwen JL (1996b) State–space analysis of a myocybernetic model of the lower urinary tract. J Theor Biol 180:215–227

    Article  PubMed  CAS  Google Scholar 

  • Celik IB, Varol A, Bayrak C, Nanduri JR (2007) A one dimensional mathematical model for urodynamics. In: Proceedings of FEDSM2007, 5th ASME/JSME fluids engineering conference, July 30–Aug 2, 2007, San Diego, p 1–7

    Google Scholar 

  • Coolsaet BLRA, van Duyl WA, van Mastrigt R, Schouten JW (1975a) Viscoelastic properties of bladder wall strips. Invest Urol 12:351–355

    PubMed  CAS  Google Scholar 

  • Coolsaet BLRA, van Duyl WA, van Mastrigt R, van der Zwart A (1975b) Visco-elastic properties of the bladder wall. Urol Int 30:16–26

    Article  PubMed  CAS  Google Scholar 

  • Coolsaet BLRA, van Mastrigt R, van Duyl WA, Huygen RE (1976) Viscoelastic properties of bladder wall strips at constant elongation. Invest Urol 13(6):435–440

    PubMed  CAS  Google Scholar 

  • Damaser MS (1999) Whole bladder mechanics during filling. Scand J Urol Nephrol Suppl 201:51–58

    Article  PubMed  CAS  Google Scholar 

  • Damaser MS, Lehman SL (1993) Does it matter, the shape of the bladder? Neurourol Urodynam 12:227–280

    Article  Google Scholar 

  • Fernández DR, Chamizo JMG, Pérez FM, Payá AS (2004) Modeling the distributed control of the lower urinary tract using a multiagent system. In: Modeling decisions for artificial intelligence, Lecture Notes on Computer Science, vol 3131. Springer, New York, pp 1–5

    Google Scholar 

  • Finkbeiner AE (1999) In vitro responses of detrusor smooth muscle to stretch and relaxation. Scand J Urol Nephrol Suppl 201:5–11

    Article  PubMed  CAS  Google Scholar 

  • Fletcher W, Smith FT, Fry C (1997) A computer simulation of micturition. Private report

    Google Scholar 

  • Fry CH, Sadananda P, Wood DN, Thiruchelvam N, Jabr RI, Clayton R (2011) Modeling the urinary tract—computational, physical, and biological methods. Neurourol Urodynam 309:692–699

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York 568 p

    Google Scholar 

  • Gloeckner DC (2003) Tisssue biomechanics of the urinary bladder wall. Thesis, Doctor Phil, University Pittsburgh, USA

    Google Scholar 

  • Gloeckner DC, Sacks MS, Fraser MO, Somogyi GT, de Groat WC, Chancellor MB (2002) Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. J Urol 167:247–252

    Article  Google Scholar 

  • Hosein RA, Griffiths DJ (1990) Computer simulation of the neural control of bladder and urethra. Neurourol Urodynam 9:601–618

    Article  Google Scholar 

  • Kim J, Lee MK, Choi B (2011) A study of the fluid mechanical urinary bladder simulator and reproduction on human urodynamics. Int J Precis Eng Manufact 12(4):679–685

    Article  Google Scholar 

  • Kinder MV, Gommer ED, Janknegt RA,van Waalwijk van Doorn ESC (1997) A method for the electromyographic mapping of the detrusor smooth muscle. Arch Physiol Biochem 105(7):673–690

    Google Scholar 

  • Kinder MV, Bastiaanssen EHC, Janknegt RA, Marani E (1999) The neuronal control of the lower urinary tract: a model of architecture and control mechanisms. Arch Physiol Biochem 107:203–222

    Article  PubMed  CAS  Google Scholar 

  • Kinder MV, Bos R, Janknegt R, Marani E (2001) Demonstration of spontaneous and stretch induced urinary bladder EMG in the living rabbit. Arch Physiol Biochem 109(5):389–403

    Article  PubMed  CAS  Google Scholar 

  • Kondo A, Susset JG (1973) Physical properties of the urinary bladder detrusor muscle. A Mechanical model based upon the analysis of stress relaxation curve. J Biomech 6:141–151

    Article  PubMed  CAS  Google Scholar 

  • Kondo A, Susset JG, Lefaivre J (1972) Viscoelastic properties of bladder I. Mechanical model and its mathematical analysis. Invest Urol 10(2):154–163

    PubMed  CAS  Google Scholar 

  • Korkmaz I, Rogg B (2007) A simple fluid-mechanical model for prediction of the stress-strain relation of the male urinary bladder. J Biomech 40:663–668

    Article  PubMed  CAS  Google Scholar 

  • Korossis S, Bolland F, Southgate J, Ingham E, Fisher J (2009) Regional biomechanical and histological characterization of the passive porcine urinary bladder: implications fro augmentation and tissue engineering strategies. Biomaterials 30:266–275

    Article  PubMed  CAS  Google Scholar 

  • KÅ™en J, Horák M, Zát’ura F, Rosenberg M (2001) Mathematical model of the male urinary tract. Biomed Pap 145(2):91–96

    Article  Google Scholar 

  • Nagatomi J, Toosi KK, Chancellor MB, Sacks MS (2008) Contribution of the extracellular matrix to the viscoelastic behaviour of the urinary bladder wall. Biomech Model Mechanobiol. doi:10.10007/s10237-007-0095-9

    PubMed  Google Scholar 

  • Nitti VW (2005) Pressure flow urodynamic studies: the gold standard for diagnosing bladder outlet obstruction. Rev Urol 7:S14–S21

    PubMed  Google Scholar 

  • Palmas G, Rigato M (1967) Confronto fra il compotamento viscoelastico della vescica urinaria e quello di un modello meccanico ideale. Atti Acad Fisiocrit Siena Med Fis 16(2):1731–1763

    CAS  Google Scholar 

  • Parekh A, Cigan AD, Wognum S, Heise RL, Chancellor MB (2010) Ex vivo deformations of the urinary bladder during whole bladder filling: contributions of extracellular matrix and smooth muscle. J Biomech 43:1708–1716

    Article  PubMed  Google Scholar 

  • Pérez FM, Chamizo JMG, Payá AS, Fernández DR (2008) A robust model of the neuronal regulator of the lower urinary tract based on artificial neural networks. Neurocomputing 71:743–754

    Article  Google Scholar 

  • Regnier C, Kolsky H, Richardson PD, Ghoinem GM, Susset JG (1983) The elastic behavior of the urinary bladder for large deformations. J Biomech 16(11):915–922

    Article  PubMed  CAS  Google Scholar 

  • Rose DK (1927) Cystometric bladder pressure determinations: their clinical importance. J Urol 17:487–501

    Google Scholar 

  • Sacks MS (2000) Biaxial mechanical evaluation of planar biological materials. J Elastic 61:199–246

    Article  Google Scholar 

  • Scheepe JR, Bross S, Schumacher S, Braun P, Weiss J, Alken P, Jünemann KP (1999) Recording the evoked canine detrusor electromyogram. Neurourol Urodyn 18(6):687–695

    Article  PubMed  CAS  Google Scholar 

  • Schmidt F, Shin P, Jorgensen TM, Djurhuus JC, Constantinou CE (2002) Urodynamics patterns of normal male micturition: influence of water consumption on urine production and detrusor function. J Urol 168:1458–1463

    Article  PubMed  Google Scholar 

  • Spirka TA, Damaser MS (2007) Modelling of physiology of the urinary tract. J Endourol 21:294–299

    Article  PubMed  Google Scholar 

  • Van Beek AJ (1997) A finite element model of the urinary bladder. Private report, ISBN 90-5282-738-9

    Google Scholar 

  • Van Duin F, Rosier PFWM, Benelmans BLH, Wijkstra H, Debruyne FMJ, van Oosterom A (2000) Comparison of different computer models of the neural control system of the lower urinary tract. Neurourol Neurodynam 12:289–310

    Google Scholar 

  • van Mastright, Coolsaet BLRA, van Duyl WA (1978) Passive properties of the urinary bladder in the collection phase. Med Biol Eng Comput 16:471–482

    Article  Google Scholar 

  • van Mastrigt R, Nagtegaal JC (1981) Dependence of the viscoelastic response of the urinary bladder wall on strain rate. Med Biol Eng Comput 19(3):291–296

    Article  PubMed  Google Scholar 

  • Venegas JG, Woll JP, Woolfson SB, Cravalho EG, Resnick N, Yalla SV (1991) Viscoelastic properties of the contracting detrusor II: experimental approach. Am J Physiol 261:364–375

    Google Scholar 

  • Vlastelica I, Veljkovic D, Stojanovic B, Rosic M, Kojic M (2007) Modeling urinary bladder deformation within passive and active regimes. J Serb Soc Comput Mech 1:129–134

    Google Scholar 

  • Wagg A, Fry CH (1999) Viscoelastic properties of isolated detrusor smooth muscle. Scand J Urol Nephrol Suppl 201:12–18

    PubMed  CAS  Google Scholar 

  • Wognum S (2010) A multi-phase structural constitutive model for insights into soft tissue remodelling mechanisms. Doctoral Thesis, University of Pittsburgh, USA, p 255

    Google Scholar 

  • Zang XJ, Li XY, Wang JL (2010) Computational fluid dynamics model of bladder-urethra system for SUI. In: IFMBE proceedings of 6th World Congress Biomechanics, vol 31. pp 1495–1498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roustem N. Miftahof .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miftahof, R.N., Nam, H.G. (2013). Investigations into Biomechanics of the Bladder. In: Biomechanics of the Human Urinary Bladder. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36146-3_2

Download citation

Publish with us

Policies and ethics