Skip to main content

Land Acquisition and Land Diversion for Mining Towards Industrial Growth: Interest Conflict and Negotiation Game for Sustainable Development

  • Chapter
  • First Online:
Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Acquisition of community land for mining activities leads to conflict of interest between miners and traditional communities. This can be resolved by two types of institutions: either the community and miner negotiate and reach the Nash solution in game theoretic framework; or settlement is made by intervention of the social planner. For both cases the long-term impacts of mine reserve depletion and change of land-use pattern are analytically compared and sustainable development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balipara Tract and Frontier Foundation, India (2010) Optimizing biodiversity and social security in the indian mining areas, A two day consultation in Balipara, Assam, 2nd & 3rd December, 2010. From http://www.baliparafoundation.com/Balipara%20Consultation.pdf. Accessed on 24 May 2011

  • Banerjee SP (2004) Social dimensions of mining sector. Min eng 85:5–30

    Google Scholar 

  • EPGORISSA (2011) Vedanta’s aluminum refinery project and bauxite mining project on Niyamgiri: environmental and social costs of vis-à-vis benefits to Orissa and its people. Report by environmental protection group Orissa, 70. From http://www.freewebs.com/epgorissa/. Accessed on 26 April 2011

  • Farzin YH (2006) Conditions for sustainable optimal economic development. Rev of Dev Eco 10(3):518–534

    Article  Google Scholar 

  • Kalpavriksh and Vasundhara (2008) Halt destructive development to save forests and forest-dwellers! statement of the national workshop on underlying causes of deforestation and forest degradation in India, organized by Kalpavriksh and Vasundhara. India, Press Release, Bhubaneswar, 26–28th Jan 2008

    Google Scholar 

  • Pindyck RS (1978) The optimal exploration and production of non-renewable resources. JPE 86:841–61

    Article  Google Scholar 

  • Sahu G (2008) Mining in the Niyamgiri Hills and tribal rights. EPW 19–21, 12 April 2008

    Google Scholar 

  • Solow RM (1974) Intergenerational equity and exhaustible resources. Rev Econ Studies 41:29–45

    Article  Google Scholar 

  • Stavins R, Wagner A, Wagner G (2003) Interpreting sustainability in economic terms: dynamic efficiency plus intergenerational equity. Econ Letters 79:339–343

    Article  Google Scholar 

  • Weitzman ML (1976) Optimal revenue functions for economic regulation. Working papers 193, Massachusetts Institute of Technology, Department of Economics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lekha Mukhopadhyay .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Appendix 1

The Hamiltonian for this problem is:

$$ H = \left( {p - \Psi } \right)Ye^{ - \delta t} - C\left( {Y,R} \right)e^{ - \delta t} - \gamma R\left( {A_{c} } \right)e^{ - \delta t} + \lambda_{1} \left[ {f\left( {A_{c} ,x} \right) - Y\left( {A_{c} } \right)} \right] + \lambda_{2} \left[ {f\left( {A_{c} ,x} \right)} \right] $$

Differentiating H with respect to Y, R, x and \( A_{c} \) we get:

$$ pe^{ - \delta t} - C_{Y} e^{ - \delta t} - \Psi e^{ - \delta t} - \lambda_{1} = 0 $$

Solving this, we get, \( \lambda_{1} = \left( {p - C_{Y} - \Psi } \right)e^{ - \delta t} \)

$$ \begin{array}{l} \dot{\lambda }_{1} = \left( {C_{R} + \gamma } \right)e^{ - \delta t} \\ \dot{\lambda }_{2} = - f_{x} \left( {\lambda_{1} + \lambda_{2} } \right) \\ \end{array} $$

Again differentiating H with respect to A c we obtain:

$$ \left[ {\left( {p - C_{Y} - \Psi } \right)Y_{{A_{c} }} - \left( {C_{R} + \gamma } \right)R_{{A_{c} }} } \right]e^{ - \delta t} + f_{{A_{c} }} \left( {\lambda_{1} + \lambda_{2} } \right) - \lambda_{1} Y_{{A_{c} }} = 0 $$

Plugging the value of \( \lambda_{1} \) in the above expression we get:

$$ \left[ {\left( {p - C_{Y} - \Psi } \right)Y_{{A_{c} }} - \left({C_{R} + \gamma } \right)R_{{A_{c} }} } \right]e^{ - \delta t} +f_{{A_{c} }} \left( {\lambda_{1} + \lambda_{2} } \right) - \left({p - C_{Y} - \Psi } \right)e^{ - \delta t} Y_{{A_{c} }} = 0 $$
$$ \begin{array}{cl}\left[ { - \left( {C_{R} + \gamma } \right)R_{{A_{c} }} } \right]e^{ - \delta t} + f_{{A_{c} }} \left( {\lambda_{1} + \lambda_{2} } \right) & = 0 \\ \left[ { - \left( {C_{R} + \gamma } \right)R_{{A_{c} }} } \right]e^{ - \delta t} - \frac{{f_{{A_{c} }} }}{{f_{x} }}\dot{\lambda }_{2} &= 0 \\ \end{array} $$
$$ \dot{\lambda }_{2} = - \left[ {C_{R} + \gamma } \right]R_{{A_{c} }} \frac{{f_{x} }}{{f_{{A_{c} }} }}e^{ - \delta t} $$

1.2 Appendix 2

Now differentiating Eq. (6) with respect to time we get the time path of land acquisition chosen by miner:

$$ \begin{array}{lllll} \left[ { - \delta \left[ {\left( {p - C_{Y} - \Psi } \right)f_{{A_{c} }} - \left( {C_{R} + \gamma } \right)R_{{A_{c} }} } \right] + \left[ {\left( {p - C_{Y} - \Psi } \right)f_{{A_{c} A_{c} }} - \left( {C_{R} + \gamma } \right)R_{{A_{c} A_{c} }} } \right]\dot{A}_{c} } \right]e^{ - \delta t} + f_{{A_{c} A_{c} }} \dot{A}_{c} \lambda_{2} + f_{{A_{c} }} \dot{\lambda }_{2} & = 0 \\ - \delta \left[ {\left( {p - C_{Y} - \Psi } \right)f_{{A_{c} }} - \left( {1 + f_{x} } \right)\left( {C_{R} + \gamma } \right)R_{{A_{c} }} } \right] + \left( {\frac{{f_{{A_{c} A_{c} }} R_{{A_{c} }} }}{{f_{{A_{c} }} }} - R_{{A_{c} A_{c} }} } \right)\left( {C_{R} + \gamma } \right)\dot{A}_{c} & = 0 \\ \\ \end{array} $$
$$ \dot{A}_{c}^{{\rm{M}}} = \frac{{\delta \left[ {\left( {p - C_{Y} - \Psi } \right)f_{{A_{c} }} - \left( {1 + f_{x} } \right)\left( {C_{R} + \gamma } \right)R_{{A_{c} }} } \right]}}{{\left( {\frac{{f_{{A_{c} A_{c} }} R_{{A_{c} }} }}{{f_{{A_{c} }} }} - R_{{A_{c} A_{c} }} } \right)\left( {C_{R} + \gamma } \right)}} $$

1.3 Appendix 3

The present value Hamiltonian for this problem with the single control variable L is:

$$ H = w.g\left( L \right)e^{ - \theta t} + \Psi .p.Y\left( {A_{c} } \right)e^{ - \theta t} + \gamma R\left( {A_{c} } \right)e^{ - \theta t} - \xi_{1} A_{c} $$
(14)

Differentiating H with respect to \( A_{c} \) and L we get:

$$ H_{{A_{c} }} = \left( {\Psi .p.Y_{{A_{c} }} + \gamma R_{{A_{c} }} } \right)e^{ - \theta t} - \xi_{1} = 0\,\,H_{L} = - \dot{\xi }_{1} = w.g_{L} .e^{ - \theta t} $$

The optimal path is found from the necessary conditions by substituting the equation of motion \( \dot{L} = - A{}_{c} \) into (14) and taking the time derivative of the resulting equation.

$$ \begin{array}{c} \left( {\Psi Y_{{A_{c} }} \left( { - \dot{L}} \right) - \gamma R_{{A_{c} }} \left( { - \dot{L}} \right)} \right)e^{ - \theta t} - \xi_{1} = 0 \\ \left( {\Psi Y_{{A_{c} L}} \left( { - \dot{L}} \right)\ddot{L} + \gamma R_{{A_{c} L}} \left( { - \dot{L}} \right)\ddot{L} - \theta \left( { - w.g_{{A_{c} }} + \Psi Y_{{A_{c} }} \left( { - \dot{L}} \right) + \gamma R_{{A_{c} }} \left( { - \dot{L}} \right)} \right)} \right) - w.g_{L} = 0 \\ \end{array} $$
$$ \left( {\Psi Y_{{A_{c} L}} + \gamma R_{{A_{c} L}} } \right)\ddot{L} = \theta \left( {\Psi Y_{{A_{c} }} + \gamma R_{{A_{c} }} } \right) - w.g_{L} $$

As defined in (13), \( \ddot{L} = - \dot{A}_{c} \), i.e., rate of change of available land for traditional production is the change of acquired land over time.

$$ \left( {\Psi Y_{{A_{c} L}} + \gamma R_{{A_{c} L}} } \right)\dot{A}_{c} = w.g_{L} - \theta \left( {\Psi Y_{{A_{c} }} + \gamma R_{{A_{c} }} } \right) $$

1.4 Appendix 4

The Hamiltonian function with the single control variable \( Y\left( {A_{c} } \right) \) and two state variables R and xis:

$$ \tilde{H} = e^{ - \delta t} \left[ {P.Y\left( {A_{c} } \right) - C\left( {Y\left( {A_{c} } \right),R\left( {A_{c} } \right)} \right) - \left[ {\Psi .p.Y\left( {A_{c} } \right) + \gamma R\left( {A_{c} } \right)} \right]\left( {1 - \rho .} \right) + g\left( {\bar{L} - A_{c} } \right)} \right] + \mu_{1} \left[ {f\left( {x,A_{c} } \right) - Y} \right] + \mu_{2} .f\left( {x,A_{c} } \right) $$

Differentiating it with respect to \( A_{c} \) and Y we get:

$$ \begin{array}{r} \tilde{H}_{{A_{c} }} = e^{ - \delta t} \left[ {\left[ {P - C_{Y} - \Psi .p\left( {1 - \rho } \right)} \right]Y_{{A_{c} }} - \left[ {C_{R} + \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} - g} \right] - \mu_{1} Y_{{A_{c} }} + \left( {\mu_{1} + \mu_{2} } \right).f_{{A_{c} }} = 0 \\ \tilde{H}_{Y} = e^{ - \delta t} \left[ {\left( {p - C_{Y} - \Psi .p\left( {1 - \rho } \right)} \right)} \right] - \mu_{1} = 0 \\ Or,\,\mu_{1} = \left[ {p - C_{Y} - \Psi .p.\left( {1 - \rho } \right)} \right]e^{ - \delta t} \\ \end{array} $$

1.5 Appendix 5

Differentiating \( \tilde{H} \) with respect to \( A_{c} \), we get:

$$ \tilde{H}_{{A_{c} }} = e^{ - \delta t} \left[ {\left[ { - \left[ {C_{R} + \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} - g} \right] + \left[ {\left( {p - C_{Y} + \Psi .p\left( {1 - \rho } \right)} \right)} \right]f_{{A_{c} }} } \right] + \mu_{2} .f_{{A_{c} }} = 0 $$

Again differentiating the above expression with respect to time we get:

$$ e^{ - \delta t} \left( {1 - \rho } \right)\left[ {\gamma R_{{A_{c} A_{c} }} + \Psi .pf_{{A_{c} A_{c} }} .} \right]\dot{A}_{c} + \delta \left[ {\left[ {C_{R} - \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} + g} \right] + \mu_{2} .f_{{A_{c} A_{c} }} \dot{A}_{c} + f_{{A_{c} }} \dot{\mu }_{2} = 0 $$

Plugging the value of \( \dot{\mu }_{2} = - \left[ {\left[ {C_{R} + \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} + .g} \right]\frac{{f_{x} }}{{f_{{A_{c} }} }}e^{ - \delta t} \) and \( \mu_{2} \) into it we get the land acquisition path under social planning:

$$ \begin{aligned} \dot{A}_{c}^{{{\text{SO}}}} = & \frac{{\left( {\delta - f_{x} } \right)\left[ {\left[ {C_{R} - \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} + g} \right]}}{{\left( {1 - \rho } \right)\left[ {\gamma R_{{A_{c} A_{c} }} + \Psi .p\left( {1 + \rho - \frac{1}{{.f_{{A_{c} }} }}} \right) + \left[ {\frac{1}{{f_{{A_{c} }} }}\left[ {\left[ {C_{R} + \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} - g} \right]\left( {p - C_{Y} } \right)} \right]} \right]}} \\ & = \frac{{f_{{A_{c} }} \left( {\delta - f_{x} } \right)\left[ {\left[ {C_{R} - \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} + g} \right]}}{{\left( {1 - \rho } \right)\left[ {\gamma R_{{A_{c} A_{c} }} + \Psi pf_{{A_{c} }} \left( {\left( {1 + \rho } \right) - 1} \right)\left[ {\left[ {\left[ {C_{R} + \gamma \left( {1 - \rho } \right)} \right]R_{{A_{c} }} - g} \right]\left( {p - C_{Y} } \right)} \right]} \right]}} \\ \end{aligned} $$

1.6 Appendix 6

If the shape of the excavated material is cubic with sides a, \( V_{E} \) is the total volume of material excavated from the mine that includes the volumes of desired material and that of the waste material,

$$ A_{E} = a^{2} = \left( {a^{3} } \right)^{2/3} = \left( {V_{E} } \right)^{2/3} . $$
(46)

Expressing the volume as the ratio of mass and average density, the volume of the desired material and the waste materials are \( \frac{Y}{{\rho_{Y} }} \) and \( \frac{W}{{\rho_{W} }} \) respectively.

Therefore from (46) \( A_{E} = (\frac{Y}{{\rho_{Y} }} + \frac{W}{{\rho_{W} }})^{\frac{2}{3}} = (\frac{1}{{\rho_{Y} }} + \frac{{k_{WY} }}{{\rho_{W} }})^{\frac{2}{3}} Y^{\frac{2}{3}} \), where \( k_{WY} \) is the strip ratio.

If the area of an waste dump is having conical shape, let the height and radius of conical waste dump be h and r respectively, and its slope is θ. (i.e., subvertical angle is \( 90^{\circ} - \theta \)).

Then its volume (\( V_{W} \)) is:

$$ V_{W} = \frac{1}{3}\pi r^{2} h = \frac{1}{3}\pi r^{2} .r.\tan \theta = \frac{1}{3}A_{W} \left( {\sqrt {\frac{{A_{W} }}{\pi }} } \right)\tan \theta = \frac{1}{3\sqrt \pi }\left( {A_{W} } \right)^{\frac{3}{2}} \tan \theta $$

The volume of the waste dump can be expressed as the ratio of its mass and average density, i.e., \( V_{W} = \frac{W}{{\rho_{W} }} \)

Therefore \( A_{W} = \left[ {\frac{3\sqrt \pi }{\tan \theta }\left( {V_{W} } \right)} \right]^{\frac{2}{3}} = (\frac{3\sqrt \pi W}{{\tan \theta \rho_{W} }})^{\frac{2}{3}} = (\frac{{3\sqrt \pi k_{WY} }}{{\tan \theta \rho_{W} }})^{\frac{2}{3}} Y^{\frac{2}{3}} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukhopadhyay, L., Ghosh, B. (2013). Land Acquisition and Land Diversion for Mining Towards Industrial Growth: Interest Conflict and Negotiation Game for Sustainable Development. In: Nautiyal, S., Rao, K., Kaechele, H., Raju, K., Schaldach, R. (eds) Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36143-2_26

Download citation

Publish with us

Policies and ethics