Skip to main content

Design of Norm Based Fault Detection and Isolation LPV Filters

  • Chapter
Robust Control and Linear Parameter Varying Approaches

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 437))

Abstract

This chapter investigates the design of robust fault detection and isolation (FDI) filters for linear parameter varying (LPV) systems. The goal is to obtain structured fault detection filters with enhanced fault transmission H_ gain and large H  ∞  nuisance attenuation. Both the so-called polytopic and Linear Fractional Representation (LFR) approaches are considered.With respect to the polytopic approach, a sufficient condition is established to guarantee sensitivity performance of the residual signal vector to faults. Robustness constraints against model perturbations and disturbances are also taken into account in the design method. A key feature of the proposed method is that the residual structuring matrices are optimized as an integral part of the design, together with the dynamic part (i.e. the filter). The design problem is formulated as a convex optimization problem and solved using LMI (Linear Matrix Inequalities) techniques.With regards to the LFR approach, it is shown by means of the scaling matrices technique that the synthesis of the residual structuring and the filter state space matrices can be performed simultaneously using LMI techniques. Computational aspects are discussed and it is shown that the proposed solution is structurally well-defined. Academic examples are considered and discussed all along the chapter. A benchmark from the European FP7 funded ADDSAFE (Advanced Fault Diagnosis for Sustainable Flight Guidance and Control) project is finally considered to demonstrate the potential of the proposed approaches. The goal is to propose new fault detection and fault diagnosis techniques that could significantly help developing environmentally-friendlier aircraft. A LPV)model-based fault detection scheme is presented for robust and early detection of faults in aircraft control surfaces servo-loop. A complete MonteCarlo campaign from a ”high-fidelity” simulator provided by AIRBUS, demonstrates the potential of the proposed technique. It is shown that the proposed fault detection scheme can be embedded within the structure of in-service monitoring systems as a part of the Flight Control Computer (FCC) software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)

    Google Scholar 

  2. Chen, J., Patton, R.J.: Robust Model–Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers (1999)

    Google Scholar 

  3. Frank, P., Ding, S., Köppen-Seliger, B.: Current developments in the theory of fdi. In: Proceedings of SAFEPROCESS 2000, Budapest, pp. 16–27. IFAC (2000)

    Google Scholar 

  4. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.: A review of process fault detection and diagnosis. part 1: Quantitative model-based methods. Computer and Chemical Engineering 27(3), 293–311 (2003)

    Article  Google Scholar 

  5. Blanke, M., Kinnaert, M., Lunze, M., Staroswiecki, M.: Diagnosis and fault tolerant control. Springer, New York (2003)

    Book  MATH  Google Scholar 

  6. Isermann, R.: Fault–Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, 1st edn. Springer (November 28, 2005) ISBN: 3540241124

    Google Scholar 

  7. Ding, S.X.: Model–based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, 1st edn. Springer, Heidelberg (2008) ISBN: 978–3540763031

    Google Scholar 

  8. Henry, D., Simani, S., Patton, R.: Fault Detection and Diagnosis for Aeronautic and Aerospace Missions in ’Fault Tolerant Flight Control: A Benchmark Challenge’. Springer (2010)

    Google Scholar 

  9. Henry, D.: A norm-based point of view for fault diagnosis: Application to aerospace missions. Automatic Control in Aerospace 4(1), online journal (2011)

    Google Scholar 

  10. Marcos, A., Ganguli, S., Balas, G.J.: An application of H  ∞  fault detection and isolation to a transport aircraft. Control Engineering Practice 13, 105–119 (2005)

    Article  Google Scholar 

  11. Amato, F., Cosentino, C., Mattei, M., Paviglianiti, G.: A direct/functional redundancy scheme for fault detection and isolation on an aircraft. Aerospace Science and Technology 10, 338–345 (2006)

    Article  MATH  Google Scholar 

  12. Kalman, R., Bucy, R.: New results in linear filtering and prediction theory. Journal of Basic Engineering, 95–108 (1997)

    Google Scholar 

  13. Julier, S., Uhlmann, J.: A new extension of the kalman filter to nonlinear systems. In: Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls (1997)

    Google Scholar 

  14. Wan, E., Merwe, R.V.D.: The Unscented Kalman Filter. S. Haykin, ch. 7. John Wiley & Sons, New York (2001)

    Google Scholar 

  15. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  16. Norgaard, M., Poulsen, N., Ravn, O.: New developments in state estimation for nonlinear systems. Automatica 36, 1627–1638 (2000)

    Article  MathSciNet  Google Scholar 

  17. Verma, V., Langford, J., Simmons, R.: Non-parametric fault identification for space rovers. In: Piedboeuf, J.-C. (ed.) International Symposium on Artificial Intelligence and Robotics in Space (iSAIRAS) (June 2001)

    Google Scholar 

  18. DeFreitas, N.: Rao-blackwellised particle filtering for fault diagnosis. In: Aerospace Conference, pp. 1767–1772. IEEE (2001)

    Google Scholar 

  19. Hutter, F., Dearden, R.: Efficient on-line fault diagnosis for non-linear systems. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Nara, Japan, May 19-23 (2003)

    Google Scholar 

  20. Dearden, R., Willeke, T., Simmons, R., Verma, V., Hutter, F., Thrun, S.: Real-time fault detection and situational awareness for rovers: report on the mars technology program task. In: Aerospace, March 6-13, pp. 826–840. IEEE (2004)

    Google Scholar 

  21. Zhang, Q., Campillo, F., Legland, F.: Nonlinear system fault detection and isolation based on bootstrap particle filters. In: Proc. of 44th IEEE CDC-ECC, Seville, Spain, pp. 3821–3826 (December 2005)

    Google Scholar 

  22. Chow, E.: Failure detection system design methodology. PhD thesis, Lab. Information and Decision system, University of Cambrige (1980)

    Google Scholar 

  23. Chow, E., Willsky, A.: Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control 29(7), 603–614 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frank, P.: Fault diagnosis in dynamic systems using analytical and knowledge-based reduncancy - a survey. Automatica 26(3), 459–474 (1990)

    Article  MATH  Google Scholar 

  25. Patton, R., Chen, J.: A review of parity space approaches to fault diagnosis. In: Proceedings of SAFEPROCESS 1991, Baden Baden, Germany, pp. 239–255. IFAC-IMACS (1991)

    Google Scholar 

  26. Delmaire, G., Cassar, J., Staroswiecki, M.: Comparaison of generalized least square identification and parity space techniques for fdi purpose in siso systems. In: Proceedings of 3rd European Control Conference, Rome, Italy, pp. 2011–2016. IFAC (1995)

    Google Scholar 

  27. Patton, R., Chen, J.: Observer-based fault detection and isolation: Robustness and applications. Control Eng. Practice 5(5), 671–682 (1997)

    Article  Google Scholar 

  28. Höfling, T., Isermann, R.: Adaptive parity equations and advanced parameter estimation for fault detection and diagnosis. In: Proceedings of the 13th Triennial World Congress, San Francisco, USA, pp. 55–60. IFAC (1996)

    Google Scholar 

  29. Gertler, J.: Fault detection and isolation using parity relations. Control Eng. Practice 5(5), 653–661 (1997)

    Article  Google Scholar 

  30. Gertler, J.: Fault detection and diagnosis in Engineering System. Marcel Dekker Inc. (1998)

    Google Scholar 

  31. Staroswiecki, M., Comtet-Varga, G.: Fault detectability and isolability in algebraic dynamic systems. In: European Control Conference ECC 1999, Karlsruhe, Germany, Paper F 0452 (1999)

    Google Scholar 

  32. Staroswiecki, M., Comtet-Varga, G.: Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37(5), 687–699 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Gertler, J., Staroswiecki, M., Shen, M.: Direct design of structured residuals for fault diagnosis in linear systems. In: Proceedings of ACC 2002, Anchorage (2002)

    Google Scholar 

  34. Wuennenberg, J.: Observer based fault detection in dynamic systems. PhD thesis, University of Duisburg (1990)

    Google Scholar 

  35. Patton, R., Chen, J.: Optimal selection of unknwon input distribution matrix in the design of robust observers for fault diagnosis. In: Proceedings of SAFEPROCESS 1991, Baden Baden, Germany, pp. 221–226. IFAC-IMACS (1991)

    Google Scholar 

  36. Patton, R., Chen, J.: Optimal unknown input distribution matrix selection in robust fault diagnosis. Automatica 29(4), 837–841 (1993)

    Article  MATH  Google Scholar 

  37. Gaddouna, B., Maquin, D., Ragot, J.: Fault detection observers for systems with unknwon inputs. In: Proceedings of SAFEPROCESS 1994, Espoo, Finland, pp. 69–74 (1994)

    Google Scholar 

  38. Patton, R.: Robust model-based fault diagnosis: The state of the art. In: Proceedings of SAFEPROCESS 1994, Espoo, Finland, pp. 1–24 (1994)

    Google Scholar 

  39. Koenig, D., Nowakowski, S., Cecchin, T.: A comparative study of unknown input observers design methods applied for fault detection, isolation and correction. In: Proceedings of CESA 1996, Lille, France, pp. 665–671 (1996)

    Google Scholar 

  40. Isermann, R.: Supervision, fault detection and fault diagnosis methods - an introduction. Control Eng. Practice 5(5), 639–652 (1997)

    Article  Google Scholar 

  41. Koenig, D., Nowakowski, S., Cecchin, T.: An original approach for actuator and component fault detection and isolation. In: Proceedings of SAFEPROCESS 1997, Hull, England, pp. 95–105. IFAC (1997)

    Google Scholar 

  42. Duan, G., Patton, R.: Robust fault detection in linear systems using luenberger observers. In: Proceedings of CONTROL 1998, Swansea, England, pp. 1468–1473 (1998)

    Google Scholar 

  43. Chen, J., Patton, R.: Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers (1999)

    Google Scholar 

  44. Mangoubi, R., Appelby, B., Farrell, J.: Robust estimation in fault detection. In: Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona, USA, pp. 2317–2322. IEEE (1992)

    Google Scholar 

  45. Edelmayer, A., Bokor, J., Keviczky, L.: H  ∞  detection filter design for linear systems: Comparison of two approaches. In: Proceedings of the 13th IFAC World Congres, San Francisco, USA, pp. 37–42 (1996)

    Google Scholar 

  46. Mangoubi, R.: Robust estimation and failure detection: A concise treatment. Springer (1998)

    Google Scholar 

  47. Rank, M., Niemann, H.: Norm based design of fault detectors. International Journal of Control 72(9), 773–783 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Collins, E., Song, T.: Robust H  ∞  estimation and fault detection of uncertain dynamic systems. Journal of Guidance, Control and Dynamics 23(5), 857–864 (2000)

    Article  Google Scholar 

  49. Stoustrup, J., Niemann, H.: Fault estimation-a standard problem approach. International Journal of Robust and Nonlinear Control 12(8), 649–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stoorvogel, A., Niemann, H., Saberi, A., Sannuti, P.: Optimal fault signal estimation. International Journal of Robust and Nonlinear Control 12(8), 697–727 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Marcos, A., Ganguli, S., Balas, G.: An application of h  ∞  fault detection and isolation to a transport aircraft. Control Engineering Practice 13, 105–119 (2005)

    Article  Google Scholar 

  52. Henry, D., Zolghadri, A.: Norm-based design of robust fdi schemes for uncertain systems under feedback control: Comparison of two approaches. Control Engineering Practice 14(9), 1081–1097 (2006)

    Article  Google Scholar 

  53. Ding, S., Jeinsch, T., Frank, P., Ding, E.: A unified approach to the optimization of fault detection systems. International Journal of Adaptive Control and Signal Processing 14, 725–745 (2000)

    Article  MATH  Google Scholar 

  54. Rambeaux, F., Hamelin, F., Sauter, D.: Optimal thresholding for robust fault detection of uncertain systems. International Journal of Robust and Nonlinear Control 10, 1155–1173 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hamelin, F., Sauter, D.: Robust fault detection in uncertain dynamic systems. Automatica 36(11), 1747–1754 (2000)

    Article  MATH  Google Scholar 

  56. Zhong, M., Ding, S., Lam, J., Wang, H.: An LMI approach to design robust fault detection filter for uncertain lti systems. Automatica 39(2), 543–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Henry, D., Zolghadri, A.: Design and analysis of robust residual generators for systems under feedback control. Automatica 41, 251–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Henry, D., Zolghadri, A.: Design of fault diagnosis filters: A multi-objective approach. Journal of Franklin Institute 342(4), 421–446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Jaimoukha, I., Li, Z., Papakos, V.: A matrix factorization solution to the \(\sc{H}_-/\sc{H}_\infty\) fault detection problem. Automatica 42, 1907–1912 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Henry, D.: Fault diagnosis of the microscope satellite actuators using \(\sc{H}_\infty/\sc{H}_-\) filters. AIAA Journal of Guidance, Control, and Dynamics 31(3), 699–711 (2008)

    Article  Google Scholar 

  61. Massoumnia, M.A.: A geometric appoach to failure detection and identification in linear systems. PhD thesis, Massachusetts Institute of Technology, Massachusetts, USA (1986)

    Google Scholar 

  62. Hammouri, H., Kinnaert, M., El Yaagoubi, E.: Observer–based approach to fault detection and isolation for nonlinear systems. IEEE Transactions on Automatic Control 44, 1879–1884 (1999)

    Article  MATH  Google Scholar 

  63. De Persis, C., Isidori, A.: A geometric approach to non–linear fault detection and isolation. IEEE Transactions on Automatic Control 45, 853–865 (2001)

    Article  Google Scholar 

  64. Kaboré, P., Othman, S., McKenna, T., Hammouri, H.: An observer-based fault diagnosis for a class of nonlinear systems – application to a free radical copolymerization reaction. International Journal of Control 73, 787–803 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kaboré, P., Wang, H.: Design of fault diagnosis filters and fault tolerant control for a class of nonlinear systems. IEEE Trans. on Automatic Control 46(11), 1805–1810 (2001)

    Article  MATH  Google Scholar 

  66. Pertew, A., Marquez, H., Zhao, Q.: LMI–based sensor fault diagnosis for nonlinear Lipschitz systems. Automatica 43(8), 1464–1469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Bruzelius, E., Petterson, S., Breitholtz, C.: Linear parameter-varying descriptions of nonlinear systems. In: Proceedings of the American Control Conference, Boston, USA, pp. 1374–1379 (2004)

    Google Scholar 

  68. Papageorgiou, C., Glover, K.: Robustness analysis of nonlinear flight controllers. AIAA Journal of Guidance, Control and Dynamics 28(4), 639–648 (2005)

    Article  Google Scholar 

  69. Leith, D., Leithead, W.: Survey if gain-scheduling analysis and design. International Journal of Control 73(11), 1001–1025 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. Packard, A.: Gain scheduling via linear fractionnal transformations. Systems and Control Letters 22(2), 79–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  72. Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled H  ∞  control in linear parameter-varying systems: a design example. Automatica 31(9), 1251–1261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  73. Apkarian, P., Gahinet, P.: A convex characterization of gain-scheduled \(\sc{H}_\infty\) controllers. IEEE Transactions on Automatic Control 40(5), 853–864 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  74. Biannic, J., Apkarian, P., Garrard, W.: Parameter varying control of a high-performance aircraft. AIAA Journal of Guidance, Control and Dynamics 20(2), 225–231 (1997)

    Article  MATH  Google Scholar 

  75. Scherer, C.: LPV control and full block multipliers. Automatica 37(3), 361–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sato, M.: Filter design for LPV systems using quadratically parameter-dependent lyapunov functions. Automatica 42, 2017–2023 (2006)

    Article  MATH  Google Scholar 

  77. Bokor, J.: Geometric theory and control of linear parameter varying systems. In: Proceedings of the 4th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, pp. 163–170, Art. n. 4262505 (2007)

    Google Scholar 

  78. Falcoz, A., Henry, D., Zolghadri, A.: Robust fault diagnosis for atmospheric re-entry vehicles: a case study. IEEE Tr. on Systems, Man and Cybernetics - Part A: Systems & Humans 40(5), 886–899 (2010)

    Article  Google Scholar 

  79. Liu, J., Wang, J., Yang, G.: An lMI approach to minimum sensitivity analysis with application to fault detection. Automatica 41, 1995–2004 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  80. Wei, X., Verhaegen, M.: Mixed \(\sc{H}_-/\sc{H}_\infty\) fault detection observer design for LPV systems. In: Proceedings of the 47th Conference on Decision and Control, Cancun, Mexico, pp. 1073–1078 (2008)

    Google Scholar 

  81. Ding, X., Guo, L.: Observer based optimal fault detector. In: Proceedings of the 13th IFAC World Congress, San Francisco, USA, pp. 187–192. IFAC (1996)

    Google Scholar 

  82. Grenaille, S., Henry, D., Zolghadri, A.: A method for designing fault diagnosis filters for LPV polytopic systems. Journal of Control Science and Engineering - Robustness Issues in Fault Diagnosis and Fault Tolerant Control 2008, Article n.1 (January 2008)

    Google Scholar 

  83. Patton, R., Frank, P., Clark, R.: Issues of fault diagnosis for dynamic systems. Springer, London (2000) ISBN: 3-540-19968-3

    Google Scholar 

  84. Isermann, R.: Model-based fault detection and diagnosis - status and applications. Annual Reviews in Control 29, 71–85 (2005)

    Article  Google Scholar 

  85. Ding, S.: Model-based Fault Diagnosis Techniques - Design schemes, Algorithms and Tools. Springer, New York (2008)

    Google Scholar 

  86. Massoumnia, M., Verghese, G., Willsky, A.: Failure detection and identification. IEEE Transactions on Automatic Control 34(3), 316–221 (1989)

    Google Scholar 

  87. Chung, W., Speyer, J.: A game theoretic fault detection filter. IEEE Transactions on Automatic Control 43(2), 143–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  88. Das, I., Dennis, J.: A closer look at drawbacks of minimizing weighted sums of objective for pareto set generation in multicriteria optimization problems. Structural Optimization 14(1), 63–69 (1997)

    Article  Google Scholar 

  89. Falcoz, A., Henry, D., Zolghadri, A., Bornschleg, E., Ganet, M.: On-board model-based robust fdir strategy for reusable launch vehicles (rlv). In: 7th International ESA Conference on Guidance, Navigation and Control Systems, County Kerry, Ireland (2008)

    Google Scholar 

  90. Beck, C., Doyle, J., Glover, K.: Model reduction of multidimensional and uncertain systems. IEEE Transactions on Automatic Control 41(10), 1466–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  91. Cockburn, J., Morton, B.: Linear fractional representations of uncertain systems. Automatica 33(7), 1263–1271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  92. Varga, A., Looye, G., Moormann, D., Griibel, G.: Automated generation of LFT-based parametric uncertainty descriptions from generic aircraft models. Mathematical Modelling of Dynamical Systems 4, 249–274 (1998)

    Article  MATH  Google Scholar 

  93. Beck, C., Doyle, J.: A necessary and sufficient minimality condition for uncertain systems. IEEE Transactions on Automatic Control 44(10), 1802–1813 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  94. Hecker, S., Varga, A., Magni, J.: Enhanced LFR-toolbox for matlab. Aerospace Science and Technology 9, 173–180 (2005)

    Article  MATH  Google Scholar 

  95. Nett, C., Jacobson, C., Miller, A.: An integrated approach to controls and diagnostics: The 4-parameter conntroller. In: Proceedings of ACC, Dayton (1988)

    Google Scholar 

  96. Murad, G., Postlethwaite, I., Gu, D.-W.: A robust design approach to integrated controls and diagnostics. In: Proceedings of the 13th Triennial World Congress, San Francisco, USA, pp. 199–204. IFAC (1996)

    Google Scholar 

  97. Stoustrup, J., Grimble, M.: Integrating control and fault diagnosis: A separation result. In: Proceedings of SAFEPROCESS 1997, Hull, England, pp. 323–328. IFAC (1997)

    Google Scholar 

  98. Stoustrup, J., Grimble, M., Niemann, H.: Design of integrated systems for the control and detection of actuator/sensor faults. Sensor Review 17(2), 138–149 (1997)

    Article  Google Scholar 

  99. Khosrowjerdi, M., Nikoukhah, R., Safari-Shad, N.: A mixed \(\sc{H}_2/\sc{H}_\infty\) approach to simultaneous fault detection and control. Automatica 40(2), 261–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  100. Marcos, A., Balas, G.: A robust integrated controller/diagnosis aircraft application. International Journal of Robust and Nonlinear Control 15, 531–551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  101. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  102. Lászlá, Baranyi, P., Petres, Z., Várlaki, P.: Proceedings of 3rd International Symposium on Computational Intelligence and Intelligent Informatics, ISCIII 2007, Agadir, Marocco, March 28-30, pp. 111–116 (2007)

    Google Scholar 

  103. Gahinet, P., Apkarian, P.: A linear matrix inequality approach to \(\sc{H}_\infty\) control. Int. Journal Robust Nonlinear Control 4, 421–428 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  104. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics (1994)

    Google Scholar 

  105. Biannic, J.: Commande robuste des systèmes à paramètres variables - Application en aéronautique. PhD thesis, Centre d’études et de recherche de Toulouse - Département DERA (1996)

    Google Scholar 

  106. Wu, F., Dong, K.: Gain-scheduling control of lft systems using parameter-dependent lyapunov functions. Automatica 42, 39–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  107. Goupil, P.: Airbus state of the art and practices on fdi and ftc in flight control system. Control Engineering Practice 19, 524–539 (2011)

    Article  Google Scholar 

  108. Goupil, P.: Oscillatory failure case detection in the a380 electrical flight control system by analytical redundancy. Control Engineering Practice 18(9), 1110–1119 (2010)

    Article  Google Scholar 

  109. Alcorta-Garcia, E., Zolghadri, A., Goupil, P.: A nonlinear observer-based strategy for aircraft oscillatory failure detection: A380 case study. IEEE Transactions on Aerospace and Electronic Systems 47(4), 2792–2806 (2011)

    Article  Google Scholar 

  110. Caglayan, A., Rahnamai, K., Allen, S.: Detection, identification and estimation of surface damage/actuator failure for high performance aircraft. In: Proceedings of the American Control Conference, pp. 2206–2212 (1988)

    Google Scholar 

  111. Zolghadri, A., Gheorghe, A., Cieslak, J., Henry, D., Goupil, P., Dayre, R., LeBerre, H.: Model-based solution to robust and early detection of control surface runaways. SAE International Journal of Aerospace (November 2011)

    Google Scholar 

  112. Gheorghe, A., Zolghadri, A., Cieslak, J., Henry, D., Goupil, P., Dayre, R., Le-Berre, H.: Early detection of aircraft control surface faults by dedicated kalman filtering: runaways and jammings. In: Workshop on Advanced Control and Diagnosis (ACD 2011), Budapest, Hungary, pp. 17–18 (November 2011)

    Google Scholar 

  113. Frank, P., Alcorta-Garcia, E., Köppen-Seliger, B.: Modelling for fault detection and isolation versus modelling for control. Mathematical and Computer Modelling of Dynamical Systems 7(1), 1–46 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henry, D. (2013). Design of Norm Based Fault Detection and Isolation LPV Filters. In: Sename, O., Gaspar, P., Bokor, J. (eds) Robust Control and Linear Parameter Varying Approaches. Lecture Notes in Control and Information Sciences, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36110-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36110-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36109-8

  • Online ISBN: 978-3-642-36110-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics