Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 437))

Abstract

This chapter deals with the problem of obtaining fault-tolerant guarantees of a multi-sensor switching strategy for automotive control. It is assumed that each sensor (or a family of sensors) has an associated observer that performs a good estimation under normal operation conditions. In presence of sensor failures the related observer provides an estimation that is biased by signals (that often depend of the references). Since the automotive vehicle is modeled as a linear parameter varying (LPV) system by taken the vehicle speed as a scheduling parameter, the main problem concerns the computation of robustly positively invariant-sets for the state trajectories of the controlled system during fault-free operation. These invariant-sets could be used as bounds and/or thresholds for the residuals (here the tracking error estimations for instance) allowing to detect a sensor failure even in presence of nominal disturbances. The invariant-sets provide a support for fast faultdetection avoiding selecting faulty-sensors. Then, these invariant-sets together with a sensor switching mechanism allows to obtain fault-tolerant guarantees of the controlled system. Here, the proposed approach is applied for a vehicle lateral dynamics control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanchini, F., Miani, S.: Stabilization of lpv systems: state feedback, state estimation and duality. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii, USA (December 2003)

    Google Scholar 

  2. Daafouz, J., Bernussou, J.: Parameter dependent lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems & Control Letters 43(5), 355–359 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: a switched lyapunov function approach. IEEE Transactions on Automatic Control 47(11), 1883–1887 (2002)

    Article  MathSciNet  Google Scholar 

  4. Dasarathy, B.V.: Sensor fusion potential exploitation–Innovative architectures and illustrative applications. Proceedings of the IEEE 85(1), 24–38 (1997)

    Article  Google Scholar 

  5. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Systems & Control Letters 37(4), 261–265 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haimovich, H., Kofman, E., Seron, M.M.: Analysis and improvements of a systematic componentwise ultimate-bound computation method. In: Proceedings of the 17th IFAC World Congress, Seoul, South Korea (July 2008)

    Google Scholar 

  7. Hsiao, T., Tomizuka, M.: Sensor fault detection in vehicle lateral control systems via switching Kalman filtering. In: Proc. of the 2005 American Control Conference, Portland, OR, USA, pp. 5009–5014 (2005)

    Google Scholar 

  8. Kalandros, M.K., Trailović, L., Pao, L.Y., Bar-Shalom, Y.: Tutorial on multisensor management and fusion algorithms for target tracking. In: Proc. of the 2004 American Control Conference, Boston, MA, USA, vol. 5, pp. 4734–4748 (June 2004)

    Google Scholar 

  9. Kofman, E.J., Haimovich, H., Seron, M.M.: A systematic method to obtain ultimate bounds for perturbed systems. International Journal of Control 80(2), 167–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, R.C., Kay, M.G.: Multisensor integration and fusion in intelligent systems. IEEE Trans. on Systems, Man and Cybernetics 19(5), 901–931 (1989)

    Article  Google Scholar 

  11. Luo, R.C., Yih, C.-C., Su, K.L.: Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sensors Journal 2(2), 107–119 (2002)

    Article  Google Scholar 

  12. Martínez, J.J., Zhuo, X.W., De Doná, J.A., Seron, M.M.: Multisensor switching strategy for automotive longitudinal control. In: Proc. of the 2006 American Control Conference, Minneapolis, MN, USA (2006)

    Google Scholar 

  13. Martinez, J.-J., de Wit, C.C.: A safe longitudinal control for adaptive cruise control and stop-and-go scenarios. IEEE Transactions on Control Systems Technology 15(2), 246–258 (2007)

    Article  Google Scholar 

  14. Niemann, H., Stoustrup, J.: An architecture for fault tolerant controllers. International Journal of Control 78(14), 1091–1110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olaru, S., De Doná, J.A., Seron, M.M., Stoican, F.: Positive invariant sets for fault tolerant multisensor control schemes. International Journal of Control 83(12), 2622–2640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Olaru, S., Stoican, F., De Doná, J.A., Seron, M.M.: Necessary and sufficient conditions for sensor recovery in a multisensor control scheme. In: Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, pp. 977–982 (July 2009)

    Google Scholar 

  17. Rakovic, S.V.: Minkowski algebra and banach contraction principle in set invariance for linear discrete time systems. In: 2007 46th IEEE Conference on Decision and Control, pp. 2169–2174 (December 2007)

    Google Scholar 

  18. Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., Mayne, D.Q.: Invariant approximations of the minimal robust positively invariant set. IEEE Transactions on Automatic Control 50(3), 406–410 (2005)

    Article  MathSciNet  Google Scholar 

  19. Richter, J.H., Heemels, W.P.M.H., van de Wouw, N., Lunze, J.: Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking. Automatica 47(4), 678–691 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seron, M.M., De Doná, J.A., Richter, J.: Fault tolerant control using virtual actuators and set-separation detection principles. International Journal of Robust and Nonlinear Control 22(7), 709–742 (2012)

    Article  MathSciNet  Google Scholar 

  21. Seron, M.M., Zhuo, X.W., De Dona, J.A., Martinez, J.J.: Multisensor switching control strategy with fault tolerance guarantees. Automatica 44(1), 88–97 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, S.-L., Deng, Z.-L.: Multi-sensor optimal information fusion Kalman filter. Automatica 40(6), 1017–1023 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vahidi, A., Eskandarian, A.: Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems 4(3), 143–153 (2003)

    Article  Google Scholar 

  24. Varshney, P.K.: Multisensor data fusion. Electronics & Communication Eng. Journal 9(6), 245–253 (1997)

    Article  Google Scholar 

  25. Xu, L., Zhang, J.Q., Yan, Y.: A wavelet-based multisensor data fusion algorithm. IEEE Trans. on Instrumentation and Measurement 53(6), 1539–1545 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinez, J.J., Varrier, S. (2013). Multisensor Fault-Tolerant Automotive Control. In: Sename, O., Gaspar, P., Bokor, J. (eds) Robust Control and Linear Parameter Varying Approaches. Lecture Notes in Control and Information Sciences, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36110-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36110-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36109-8

  • Online ISBN: 978-3-642-36110-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics