Skip to main content

Noise

  • Chapter
  • First Online:
Topological Signal Processing

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 2784 Accesses

Abstract

Signals are a collection of related measurements. Of course, all measurements contain errors, so error tolerance is a desirable feature of any signal processing system. At first sight, topological methods appear to be both very tolerant and very intolerant to errors. This tension is characterized by the fact that unknown deformations in the configuration of sensors can produce little or no effect on the output of a topological filter or detector, yet deformations in the values returned by each sensor can dramatically change the output of both topological filters and detectors. We can improve the error tolerance of topological detectors by changing how the measurement values are interpreted. Rather than taking a statistical approach, which assumes a model of randomness associated to each measurement and its relation to those nearby, we assume that whatever values are taken must be self-consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A multiset is a set that can contain duplicate elements.

  2. 2.

    Two maps belong to the same homotopy class if there is a homotopy between them.

References

  • Amenta N, Choi S, Dey TK, Leekha N (2002) A simple algorithm for homeomorphic surface reconstruction. Int J Comput Geom Appl 12(1,2):125–141

    Google Scholar 

  • Banyaga A, Hurtubise D (2004) Morse homology. Springer, Dordrecht

    Google Scholar 

  • Carlsson G, de Silva V (2010) Zigzag persistence. Found Comput Math 10(4):367–405

    Article  MATH  MathSciNet  Google Scholar 

  • Carrara W, Goodman R, Majewski R (1995) Spotlight synthetic aperture radar: signal processing algorithms. Artech House, Norwood

    Google Scholar 

  • Chazal F, Lieutier A (2006) Topology guaranteeing manifold reconstruction using distance function to noisy data. In: Proceedings of the 22st symposium on computational geometry, p. 112–118

    Google Scholar 

  • Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete Comput Geom 37(1):103–120

    Google Scholar 

  • Derksen H, Weyman J (2005) Quiver representations. Not Am Math Assoc 52(2):200–206

    MATH  MathSciNet  Google Scholar 

  • Edelsbrunner H, Letscher D, Zomorodian A (2002) Topological persistence and simplification. Discrete Comput Geom 28:511–533

    Article  MATH  MathSciNet  Google Scholar 

  • Federer H (1959) Curvature measures. Trans Amer Math Soc 93(3):418–491

    Article  MATH  MathSciNet  Google Scholar 

  • Forman R (1998) Morse theory for cell complexes. Adv Math 134:90–145

    Article  MATH  MathSciNet  Google Scholar 

  • Gabriel P (1972) Unzerlegbare darstellungen i. Manuscripta Math 6:71–103

    Google Scholar 

  • Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45(1):61

    Article  MATH  MathSciNet  Google Scholar 

  • Hatcher, A (2002) Algebraic topology. Cambridge University Press, Cambridge

    Google Scholar 

  • Jakowatz C, Wahl D, Eichel P, Ghiglia D, Thompson P (1996) Spotlight-mode synthetic aperture radar: a signal processing approach, vol 101. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Kaczynski T, Mischaikow K, Mrozek M (2004) Computational homology. Springer, NY

    Google Scholar 

  • Lee J (2003) Smooth manifolds. Springer, New York

    Google Scholar 

  • Mileyko Y, Mukherjee S, Harer J (2011) Probability measures on the space of persistence diagrams. Inverse Prob 27(12):124007

    Google Scholar 

  • Milnor J (1963) Morse theory. Princeton University Press, NJ

    Google Scholar 

  • Mischaikow K, Nanda V (2013) Morse theory for filtrations and efficient computation of persistent homology. Discrete & Comput Geom 50(2):330–353

    Google Scholar 

  • Niyogi P, Smale S, Weinberger S (2004) Finding the homology of submanifolds with high confidence from random samples

    Google Scholar 

  • Patel A (2011) A continuous theory of persistence for mappings between manifolds. arXiv, preprint arXiv:1102.3395

    Google Scholar 

  • Robinson M, Ghrist R (2012) Topological localization via signals of opportunity. IEEE Trans Signal Process 60(5):2362–2373

    Article  MathSciNet  Google Scholar 

  • Sexton H, Vejdemo-Johansson M (2011) JPlex simplicial complex library. http://comptop.stanford.edu/programs/jplex/

  • Silva V de, Carlsson G (2004) Topological estimation using witness complexes. In: Alexa M, Rusinkiewicz S (eds) Eurographics symposium on point-based graphics

    Google Scholar 

  • Silva V de, Morozov D, Vejdemo-Johansson M (2011) Persistent cohomology and circular coordinates. Discrete Comput Geom 45(4):737–759

    Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, p. 366–381. Springer, Berlin

    Google Scholar 

  • Zomorodian A, Carlsson G (2005) Computing persistent homology. Discrete Comput Geom 33(2):249–274

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Robinson .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, M. (2014). Noise. In: Topological Signal Processing. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36104-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36104-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36103-6

  • Online ISBN: 978-3-642-36104-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics