Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 230))

  • 1103 Accesses

Abstract

The cell method presented in the previous chapters can be applied to different classes of physical problems. Some of these classes are presented in this chapter, in both static and time-varying formulations, together with a short explanation of their main characteristics. All the CM results have been obtained by means of the DualLab research software [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freschi, F., Giaccone, L., Repetto, M.: Educational value of the algebraic numerical methods in electromagnetism. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 27(6), 1343–1357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modelling single neuron dynamics and computations: a balance of details and abstraction. Science 314(5796), 80–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tonti, E.: Finite Formulation of Electromagnetic Field. IEEE Transactions on Magnetics 38, 333–336 (2002)

    Article  Google Scholar 

  4. Di Barba, P., Freschi, F., Mognaschi, M.E., Pichiecchio, A., Repetto, M., Savini, A., Vultaggio, A.: A source identification problem for the electrical activity of brain during hand movement. IEEE Transactions on Magnetics 47(5), 878–881 (2011)

    Article  Google Scholar 

  5. Desoer, C.A., Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, New York (1969)

    Google Scholar 

  6. Branin Jr., F.H.: The algebraic-topological basis for network analogies and the vector calculus. In: Proceedings of Symposium on Generalized Networks, April 12-14, pp. 453–491. Polytechnic Institute of Brooklin (1966)

    Google Scholar 

  7. Binns, K.J., Lawrenson, P.J., Trowbridge, C.W.: The analytical and numerical solution of electric and magnetic fields. Wiley (1995)

    Google Scholar 

  8. Simkin, J., Trowbridge, C.W.: Three-dimensional nonlinear electromagnetic field computations, using scalar potentials. IEE Proceedings, Part B 127(6), 368–374 (1980)

    Google Scholar 

  9. Abert, C., Selke, G., Kruger, B., Drews, A.: A fast finite-difference method for micromagnetics using the magnetic scalar potential. IEEE Transaction on Magnetics 99, 368–374 (2011)

    Google Scholar 

  10. Albanese, R., Rubinacci, G.: Magnetostatic field computation in terms of two-component vector potential. International Journal Numerical Method in Engineering 29, 515–532 (1990)

    Article  MATH  Google Scholar 

  11. Repetto, M., Trevisan, F.: Global formulation for 3D magneto-static using flux and gauged potential approaches. Int. Journal on Numerical Methods in Engineering 60, 755–772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chiampi, M., Chiarabaglio, D., Repetto, M.: An accurate investigation on numerical methods for nonlinear magnetic field problems. Journal of Magnetism and Magnetic Materials 133, 591–595 (1994)

    Article  Google Scholar 

  13. Canova, A., Gruosso, G., Repetto, M.: Integral methods for analysis and design of low-frequency conductive shields. IEEE Transaction on Magnetics 39, 2009–2017 (2003)

    Article  Google Scholar 

  14. Bíró, O., Preis, K., Vrisk, G., Richter, K.R., Ticar, I.: Computation of 3-D magnetostatic fields using a reduced scalar potential. IEEE Transaction on Magnetics 29(2), 1329–1332 (1993)

    Article  Google Scholar 

  15. Le Menach, Y., Clenet, S., Piriou, F.: Determination and utilization of the source field in 3d magnetostatic problems. IEEE Transaction on Magnetics 34(5), 2509–2512 (1998)

    Article  Google Scholar 

  16. Specogna, R., Trevisan, F.: Discrete constitutive equations in a − χ geometric eddy-current formulation. IEEE Transactions on Magnetics 41(4), 1259–1263 (2005)

    Article  Google Scholar 

  17. De Gersem, H., Weiland, T.: Field-circuit coupling for time-harmonic models discretized by the finite integration technique. IEEE Transaction on Magnetics 40(2), 1334–1337 (2004)

    Article  Google Scholar 

  18. Team website, www.compumag.org/jsite/team.html , (accessed December 4, 2012)

  19. Takahashi, N., Nakata, T., Morishige, H.: Summary of results for problem 20 (3-D static force problem). COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 14(2/3), 57–75 (1995)

    Article  MATH  Google Scholar 

  20. Pichon, L., Razek, A.: Force calculation in axisymmetric induction devices using a hybrid FEM-BEM technique. IEEE Transactions on Magnetics 26, 1050–1053 (1990)

    Article  Google Scholar 

  21. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, Auckland (1970)

    MATH  Google Scholar 

  22. Tonti, E., Zarantonello, F.: Algebraic formulation of elastostatics: the cell method. Computer Modeling in Engineering & Sciences 39(3), 201–236 (2009)

    MathSciNet  Google Scholar 

  23. Delprete, C., Freschi, F., Repetto, M., Rosso, C.: Thermo-mechanical analysis using a multiphysics approach. Journal of Physics: Conference Series 181(1) (2009)

    Google Scholar 

  24. Delprete, C., Freschi, F., Repetto, M., Rosso, C.: Experimental validation of a numerical multiphysics technique for electro-thermo-mechanical problem. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 29(6), 1642–1652 (2010)

    Article  MATH  Google Scholar 

  25. Nastran, www.mscsoftware.com/products/cae-tools/msc-nastran.aspx , (accessed December 4, 2012)

  26. Alotto, P., De Cian, A., Molinari, G.: A time-domain 3-D full-Maxwell solver based on the Cell Method. IEEE Transactions on Magnetics 42(4), 799–802 (2006)

    Article  Google Scholar 

  27. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method - Volume 1: The Basis, 5th edn. Butterworth-Heinemann (2000)

    Google Scholar 

  28. Meirovitch, L.: Elements of VIbration Analysis. McGraw-Hill (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Alotto .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alotto, P., Freschi, F., Repetto, M., Rosso, C. (2013). Classical Physical Problems. In: The Cell Method for Electrical Engineering and Multiphysics Problems. Lecture Notes in Electrical Engineering, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36101-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36101-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36100-5

  • Online ISBN: 978-3-642-36101-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics