Skip to main content

Musical Instruments

  • Chapter

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 2))

Abstract

Musical Acoustics started in modern times by Felix Savart (1791-1841) who is not only known for the Bio-Savart law of magneto-statics but also for being the first modern investigator of the violin. He was the first to introduce the idea of the sound post to change a violin from a dipole to a monopole source with much larger radiation in the low frequency range. Indeed to date the violin may be the instrument which has been investigated most often (Hutchings 1997).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschhoff, V.: Experimentelle Untersuchungen an einer Klarinette [Experimental investigations of a clarinet]. Akustische Zeitschrift 1, 77–93 (1936)

    Google Scholar 

  2. Backus, J.: The Acoustical Foundations of Music. Norton & Co. (1977)

    Google Scholar 

  3. Chaigne, A., Kergomard, J., Boutillon, X., Dalmont, J.-P.: Acoustique des instruments de musique, Belin (2008)

    Google Scholar 

  4. Dubnov, S., Rodet, X.: Investigation of phase coupling phenomena in sustained portion of musical instruments sound. J. Acoust. Soc. Am. 113(1), 348–359 (2003)

    Google Scholar 

  5. Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments. Springer (2000)

    Google Scholar 

  6. Fletcher, N.H.: Mode locking in nonlinearly excited inharmonic musical oscillators. J. Acoust. Soc. Am. 64, 1566–1569 (1978)

    Google Scholar 

  7. Hamilton, M.F., Blackstock, D.T. (eds.): Nonlinear Acoustics. Academic Press, New York (1998)

    Google Scholar 

  8. Hutchings, C. (ed.): Research Papers in Violin Acoustics, vol. I & II. Publication by the Acoustical Society of America (1997)

    Google Scholar 

  9. Moon, F.C.: Chaotic and Fractal dynamics, NY (1992)

    Google Scholar 

  10. Morse, P., Ingard, U.: Theoretical Acoustics. Princeton Univ. Press (1983)

    Google Scholar 

  11. Naugol‘nych, K.A.: Nonlinear wave processes in acoustics. Cambridge University Press (1998)

    Google Scholar 

  12. Bader, R.: Characterizing Classical Guitars Using Top Plate Radiation Patterns Measured by a Microphone Array. Acta Acustica United with Acustica 97, 830–839 (2011)

    Google Scholar 

  13. Bader, R.: Sound Field Reconstruction Using Microphone Array Recordings. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2010. LNCS. Springer (2011)

    Google Scholar 

  14. Bader, R.: Characterization of guitars through fractal correlation dimensions of initial transients. J. of New Music Research 35(4), 323–332 (2008)

    Google Scholar 

  15. Bader, R.: Physical model of a complete classical guitar body. In: Bresin, R. (ed.) Proceedings of the Stockholm Music Acoustics Conference 2003, vol. 1, pp. 121–124 (2003)

    Google Scholar 

  16. Caldersmith, G.: Guitar as a reflex enclosure. J. Acoust. Soc. Am. 63, 1566–1575 (1978)

    Google Scholar 

  17. Caldersmith, G.: Frequency response and played tones of guitars. Quarterly Reports STL-QPSR 4/1980, Department of Speech Technology and Music Acoustics, pp. 50–61. Royal Institute of Technology KTH Stockholm (1980)

    Google Scholar 

  18. Caldersmith, G.: Towards a classic guitar family. American Lutherie 18, 20–25 (1989)

    Google Scholar 

  19. Caldersmith, G.: The guitar family, continued. American Lutherie 41, 10–16 (1995)

    Google Scholar 

  20. Caldersmith, G.: Designing a guitar family. Applied Acoustics 465, 3–17 (1995)

    Google Scholar 

  21. Christensen, O., Vistisen, B.B.: The response of played guitars at middle frequencies. Acustica 53, 45 (1983)

    Google Scholar 

  22. Christensen, O.: Guitar Sound Pressure Response. Acustica 54, 289–295 (1984)

    Google Scholar 

  23. Derveaux, G.: Modélisation numérique de la guitare acoustique. PhD Thesis de i’ École Polytechnique Paris (2002)

    Google Scholar 

  24. Elejabarrieta, M.J., Ezcurra, A., Santamaria, C.: Vibrational behaviour of the guitar soundboard analysed by means of finite element analysis. Acta Acustica United with Acustica 87, 128–136 (2001)

    Google Scholar 

  25. Elejabarrieta, M.J., Ezcurra, A., Santamaria, C.: Coupled modes of the resonance box of the guitar. J. Acoust. Soc. Am. 111, 2283–2292 (2002)

    Google Scholar 

  26. Elliott, J.A.: Intrinsic nonlinear efects in vibrating strings. Am. J. Phys. 48, 478–480 (1980)

    Google Scholar 

  27. Elliott, J.A.: Nonlinear resonance in vibrating strings. Am. J. Phys. 50, 1148–1150 (1982)

    Google Scholar 

  28. Gough, C.E.: The theory of string resonances on musical instruments. Acustica 49, 124–141 (1981)

    Google Scholar 

  29. Hill, T.J.W., Richardson, B.E., Richardson, S.J.: Acoustical Parameters for the Characterisation of the Classical Guitar. Acta Acustica United with Acustica 90(2), 335–348 (2004)

    Google Scholar 

  30. Houtsma, A.J.M., Burns, E.M.: Temporal and spectral characteristics of tambura tones. J. Acoust. Soc. Am. 71, 83 (1982)

    Google Scholar 

  31. Jahnel, F.: Die Gitarre und ihr Bau [The guitar and its construction]. Frankfurt a.M. (1986)

    Google Scholar 

  32. Jansson, E.V.: A study of acoustical and hologram interferometric measurements of the top plate vibrations of a guitar. Acustica 25, 95–100 (1971)

    Google Scholar 

  33. Jansson, E.V.: Fundamentals of the guitar tone. J. of Guitar Acoustics 6, 26–41 (1982)

    Google Scholar 

  34. Jansson, E.V.: Acoustics for the guitar player. In: Jannson (ed.) Function, Construction, and Quality of the Guitar, pp. 7–26. Royal Swedish Academy of Music, Stockholm (1983)

    Google Scholar 

  35. Lai, J.C.S., Burgess, M.A.: Radiation efficiency of acoustic guitars. J. Acoust. Soc. Am. 88, 1222–1227 (1990)

    Google Scholar 

  36. Legge, K.A., Fletcher, N.H.: Nonlinear generation of missing modes on a vibrating string. J. Acoust. Soc. Am. 76(1), 5–12 (1984)

    Google Scholar 

  37. Le Pichon, A., Berge, S., Chaigne, A.: Comparison between Experimental and Predicted Radiation of a Guitar. Acta Acustica United with Acustica 84, 136–145 (1998)

    Google Scholar 

  38. Meyer, J.: Verbesserung der Klangqualität von Gitarren aufgrund systematischer Untersuchungen ihres Schwingungsverhaltens [Improvement of the sound quality of guitars by systematic investigations of their vibrating behaviour]. Physikalisch-Technische Bundesanstalt Braunschweig, Forschungsvorhaben Nr. 4490 (1980)

    Google Scholar 

  39. Molin, N.E., Wåhlin, A.O., Jansson, E.V.: Transient wave response of the violin body. J. Acoust. Soc. Am. 88, 2479–2481 (1990)

    Google Scholar 

  40. Molin, N.E., Wôahlin, A.O., Jansson, E.V.: Transient wave response of the voilin body revisited. J. Acoust. Soc. Am. 90(4), 2192–2195 (1991)

    Google Scholar 

  41. Pickering, N.C.: Noninear behavior in overwound violin strings. J. of the Catugut Acoustical Society 1(3), 46–50 (1989)

    Google Scholar 

  42. Richardson, B.E., Roberts, G.W.: The adjustment of mode frequencies in guitars: a study by means of holographic interferometry and finite element analysis. In: Proceedings of the Stockhom Musical Acoustics Conference, pp. 285–302 (1983)

    Google Scholar 

  43. Richardson, B.E., Walker, G.P., Brooke, M.: Synthesis of guitar tones from fundamental prameters relating to construction. Proceedings of the Institute of Acoustics 12(1), 757–764 (1990)

    Google Scholar 

  44. Stetson, K.A.: On Modal coupling in string instrument bodies. J. of Guitar Aocustics 3, 23–31 (1981)

    Google Scholar 

  45. Välimäki, V., Tolonen, T.: Development and Calibration of a Guitar Synthesizer. J. Audio Eng. Soc. 46, 766–778 (1998)

    Google Scholar 

  46. Williams, E.G.: Fourier Acoustics. Sound Radiation and Nearfield Acoustic Holography. Academic Press, San Diego (1999)

    Google Scholar 

  47. Woodhouse, J.: The Transient Behaviour of Guitar Strings. In: Proceedings of Stockholm Musical Acoustics Conference 2003, pp. 137–140 (2003)

    Google Scholar 

  48. Askenfeld, A.: Measurements of bow motion and bow force in violin playing. J. Acoust. Soc. Am. 80, 1007–1015 (1986)

    Google Scholar 

  49. Backhaus, H.: Über Geigenklänge [About violin sounds]. Zeitschrift für Technische Physik 11, 509–515 (1927)

    Google Scholar 

  50. Backhaus, H.: Über die Bedeutung der Ausgleichsvorgänge in der Akustik [About die role of balance processes in acoustics]. Zeitschrift für Technische Physik 18, 98–103 (1937)

    Google Scholar 

  51. Bader, R.: Theoretical Framework for Initial Transient and Steady-State Frequency Amplitudes of Musical Instruments as Coupled Subsystems. In: Proceedings of 20th International Symposium on Music Acoustics (ISMA), Sydney, Katoomba, pp. 1–8 (2010)

    Google Scholar 

  52. Bader, R.: Whole geometry Finite-Difference modeling of the violin. In: Proceedings of the Forum Acusticum 2005, pp. 629–634 (2005)

    Google Scholar 

  53. Bissinger, G.: Structural acoustics model of the violin raditivity profile. J. Acoust. Soc. Am. 124(6), 2013–2023 (2008)

    Google Scholar 

  54. Bissinger, G., Williams, E.G., Valdivia, N.: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography. J. Acoust. Soc. Am. 121(6), 3899–3906 (2007)

    Google Scholar 

  55. Bretos, J., Santamaria, C., Moral, J.A.: Vibrational patterns and frequency responses of the free plates and box of a violin obtained by finite element analysis. J. Acoust. Soc. Am. 105(3), 1942–1950 (1999)

    Google Scholar 

  56. Bretos, C., Santamaria, C., Moral, J.A.: Finite element analysis and experimantal measurements of natural eigenmodes and random responses of wooden bars used in musical instruments. Applied Acoustics 56(3), 141–156 (1999)

    Google Scholar 

  57. Cremer, L.: The physics of the violin. MIT Press, Cambridge (1985)

    Google Scholar 

  58. Cremer, L.: Consideration of the duration of transients in bowed instruments. J. Catgut Acoustical Society, Newsletter 38, 13–18 (1982)

    Google Scholar 

  59. Cremer, L.: Der Einflußdes Bodgendrucks auf die selbsterregten Schwingungen der gestrichenen Saite [The influence of the bowing pressure on the self-sustained vibration of the bowed string]. Acustica 30, 119 (1974)

    Google Scholar 

  60. Duffour, P., Woodhouse, J.: Instability of systems with a frictional point contact: Part 1, basic Modelling. J. Sound and Vibration 271, 365–390 (2004)

    Google Scholar 

  61. Duffour, P., Woodhouse, J.: Instability of systems with a frictional point contact: Part 2, model extensions. J. of Sound and Vibration 271, 391–410 (2004)

    Google Scholar 

  62. Güth, W.: A comparison of the Raman and the Oscillator Models of String Excitation by Bowing. Acustica 82, 169–174 (1996)

    Google Scholar 

  63. Güth, W.: Einführung in die Akustik der Streichinstrumente [Introduction in the acoustics of string instruments]. Stuttgart (1995)

    Google Scholar 

  64. Güth, W.: ’Ansprache’ von Streichinstumenten [Response of string instruments]. Asustica 46, 259–267 (1980)

    Google Scholar 

  65. Güttler, K.: Wave analysis of a string bowed to anomalous low frequencies. J. of the Catgut Acoustical Society 2, 8–14 (1994)

    Google Scholar 

  66. Hanson, R.J., Schneider, A.J., Halgedahl, F.W.: Anomalous low-pitched tones from a bowed violin string. J. of the Catgut Acoustical Society 2, 1–7 (1994)

    Google Scholar 

  67. Hanson, R.J., Macomber, H.K., Morrison, A.C.: Unusual motions of a nonlinear asymmetrical vibrating string. In: Proceedings of the Stockholm Musical Acoustics Conference, pp. 731–734 (2003)

    Google Scholar 

  68. Hutchings, C. (ed.): Research Papers in Violin Acoustics, vol. I & II. Publication by the Acoustical Society of America (1997)

    Google Scholar 

  69. Jansson, E.V.: The BH-hill and tonal quality of the violin. In: Bresin, R. (ed.) Proceedings of SMAC 2003 Stockholm Music Acoustics Conference 2003, pp. 71–74 (2003)

    Google Scholar 

  70. Kimula, M.: How to produce subharmonics on the violin. New Music Research 28, 178–184 (1999)

    Google Scholar 

  71. Kubota, H.: Kinematical study of the bowed string. J. of Acoust. Society of Japan 43(5) (1987); translated by author in: Hutchings, C. (ed.) Research Papers in Violin Acoustics 1975-1993, pp. 165–175 (1997)

    Google Scholar 

  72. Legge, K.A., Fletcher, N.H.: Nonlinear generation of missing modes on a vibrating string. J. Acoust. Soc. Am. 76(1), 5–12 (1984)

    Google Scholar 

  73. McIntyre, M.E., Schumacher, R.T., Woodhouse, J.: On the oscillations of musical instruments. J. Acoust. Soc. Am. 74(5), 1325–1345 (1983)

    Google Scholar 

  74. McIntyre, M.E., Schumacher, R.T., Woodhouse, J.: Aperiodicity in bowed-string modtion. Acustica 49, 13–32 (1981)

    Google Scholar 

  75. McIntyre, M.E., Woodhouse, J.: Fundamentals of bowed-string dynamics. Acustica 43, 93–108 (1979)

    Google Scholar 

  76. Müller, G., Lauterborn, W.: The bowed string as a nonlinear dynamical system. Acustica 82, 657–664 (1996)

    Google Scholar 

  77. Pfeifle, F., Bader, R.: Real-Time Physical Modelling of a real Banjo geometry using FPGA hardware technology. In: Bader, R. (ed.Hrsg.) Musical Acoustics, Neurocognition and Psychology of Music/Musikalische Akustik, Neurokognition und Musikpsychologie, Hamburger Jahrbuch für Musikwissenschaft, vol. 25, pp. 71–86 (2009)

    Google Scholar 

  78. Pitteroff, R., Woodhouse, J.: Mechanics of the Contact Area Between a Violin Bow and a String. Part I: Reflection and Transmission Behaviour. Acta Acustica United with Acustica 84(3), 543–562 (1998)

    Google Scholar 

  79. Pitteroff, R., Woodhouse, J.: Mechanics of the Contact Area Between a Violin Bow and a String. Part II: Simulating the Bowed String. Acta Acustica United with Acustica 84(4), 744–757 (1998)

    Google Scholar 

  80. Pitteroff, R., Woodhouse, J.: Mechanics of the Contact Area Between a Violin Bow and a String. Part III: Parameter Dependence. Acta Acustica United with Acustica 84(5), 929–938 (1998)

    Google Scholar 

  81. Raman, C.V.: On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results. Bulletin 15 of the Indian Association for the Cultivaion of Science 15 (1918)

    Google Scholar 

  82. Schumacher, R.T.: Measurements of some paramteters of bowing. J. Acoust. Soc. Am. 96(4), 1985–1998 (1993)

    Google Scholar 

  83. Schumacher, R.T.: Self-Sustained Oscillations of the Bowed String. Acustica 43, 109–120 (1979)

    Google Scholar 

  84. Wang, L.M., Burroughs, C.B.: Acoustic radiation from bowed violins. J. Acoust. Soc. Am. 110(1), 543–555 (2001)

    Google Scholar 

  85. Weinrich, G., Caussé, R.: Elementary stbility considerations for bowed-string motion. J. Acoust. Soc. Am. 89, 887–895 (1991)

    Google Scholar 

  86. Woodhouse, J.: On the Playability of Violins. Part II: Minimum bow Force and Transients. Acustica 78, 137–153 (1993)

    Google Scholar 

  87. Woodhouse, J., Galluzzo, P.M.: The bowed string as we know it today. Acta Acustica United with Acustica 90, 579–589 (2004)

    Google Scholar 

  88. Woodhouse, J.: Bowed String Simulation Using a Thermal Friction Model. Acta Acustica United with Acustica 89, 355–368 (2003)

    Google Scholar 

  89. Woodhouse, J., Schumacher, R.T.: The transient behaviour of models of bowed-string motion. Chaos 5, 509–523 (1995)

    Google Scholar 

  90. Woodhouse, J., Schumacher, R.T., Garoff, S.: Reconstruction of bowing point friction force in a bowed string. J. Acoust. Soc. Am. 108, 357–368 (2000)

    Google Scholar 

  91. Woodhouse, J., Loach, A.R.: The torsional behaviour of cello strings. Acta Acustica United with Acustica 85, 734–740 (1999)

    Google Scholar 

  92. Abel, M., Bergweiler, S., Gerhard-Multhaupt, R.: Synchronization of organ pipes: experimental observations and modeling. J. Acoust. Soc. Am. 119, 2467–2475 (2006)

    Google Scholar 

  93. Almeida, A., Vergez, C., Caussé, R.: Quasistatic nonlinear characteristics of double-reed instruments. J. Acoust. Soc. Am. 121(1), 536–546 (2007)

    Google Scholar 

  94. Angster, J., Miklós, A.: Coupling between Simultaneously Sounded Organ Pipes. AES E-Library 94 (1993)

    Google Scholar 

  95. Aschhoff, V.: Experimentelle Untersuchungen an einer Klarinette [Experimental investigations of a clarinet]. Akustische Zeitschrift 1, 77–93 (1936)

    Google Scholar 

  96. Backus, J.: Multiphonic tones in the woodwind instruments. J. Acoust. Soc. Am. 63, 591–599 (1978)

    Google Scholar 

  97. Backus, J.: Imput impedance curves for the reed woodwind instruments. J. Acoust. Soc. Am. 56(4), 1266–1274 (1974)

    Google Scholar 

  98. Bader, R.: Individual reed characteristics due to changed damping using coupled flow-structure and time-dependent geometry changing Finite-Element calculation. In: Proceedings Forum Acusticum Joined with American Acoustical Society Paris 2008, pp. 3405–3410 (2008)

    Google Scholar 

  99. Bader, R.: Turbulent flow modeling using combined compressable Euler and molecular dynamic simulations (MDS) methods. J. Acoust. Soc. Am. 121, 3158 (2007)

    Google Scholar 

  100. Bader, R.: Turbulent k-ε model of flute-like musical instrument sound production. In: Lutton, E., Lévy-Véhel, J. (eds.) Fractals in Engineering. New Trends in Theory and Applications, pp. 109–122. Springer, NY (2005)

    Google Scholar 

  101. Boutillon, X., Gibiat, V.: Evaluation of the acoustical stiffness of saxophone reeds under playing conditions by using the reactive power approach. J. Acoust. Soc. Am. 100(2), 1178–1189 (1996)

    Google Scholar 

  102. Braasch, J., Ahrens, C.: Attack Transients of Free Reed Pipes in Comparison to Striking Reed Pipes and Diapason Pipes. Acta Acustica United with Acustica 86, 662–670 (2000)

    Google Scholar 

  103. Campbell, D.M.: Nonlinear dynamics of musical reed and brass wind instruments. Contemporary Physics 40(6), 415–431 (1999)

    Google Scholar 

  104. Castellengo, M.: Acoustical Analysis of Initial Transients in Flute Like Instruments. Acta Acustica United with Acustica 85, 387–400 (1999)

    Google Scholar 

  105. Cremer, L., Ising, H.: Die selbsterregten Schwingungen von Orgelpfeifen [The self-sustained vibrations of organ pipes]. Acustica 19, 143–153 (1967)

    Google Scholar 

  106. Coltman, J.W.: Sounding mechanism of the Fute and Organ Pipe. J. Acoust. Soc. Am. 44(4), 983–992 (1968)

    Google Scholar 

  107. Coltman, J.W.: Acoustics of the Flute. Physics Today, 25–32 (November 1968)

    Google Scholar 

  108. Dalmont, J.-P., Gilbert, J., Kergomard, J., Ollivier, S.: An analytical prediction of the oscillation and extinction thresholds of a clarinet. J. Acoust. Soc. Am. 118(5), 3294–3305 (2005)

    Google Scholar 

  109. da Silva, A.R., Scavone, G.P., van Salstijn, M.: Numerical simulations of fluid-structure interactions in single-reed mouthpieces. J. Acoust. Soc. Am. 122(3), 1798–1809 (2008)

    Google Scholar 

  110. Durbin, P.A., Pettersson, R.: Statistical Theory and Modeling for Turbulent Flows. Wiley & Sons (2001)

    Google Scholar 

  111. Elder, S.A.: On the mechanism of sound production in organ pipes. J. Acoust. Soc. Am. 54(6), 1554–1564 (1973)

    Google Scholar 

  112. Fabre, B., Gilbert, J., Hirschberg, A., Pelorson, X.: Aeroacoustics of Musical Instruments. Annual Review of Fluid Mechanics (2011) (in print)

    Google Scholar 

  113. Fabre, B., Hirschberg, A.: Physical Modeling of Flue Instruments: A Review of Lumped Models. Acta Acustica United with Acustica 86, 599–610 (2000)

    Google Scholar 

  114. Fabre, B., Hirschberg, A., Wijnands, A.P.J.: Vortex Shedding in Steady Oscillation of a Flue Organ Pipe. Acta Acustica United with Acustica 82, 863–877 (1996)

    Google Scholar 

  115. Faccinetti, M.L., Boutillon, X., Constantinescu, A.: Numerical and experimental modal analysis of the reed and pipe of a clarinet. J. Acoust. Soc. Am. 113(5), 2874–2883 (2003)

    Google Scholar 

  116. Farner, S., Vergez, C., Kergomard, J., Lizée, A.: Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments. J. Aocust. Soc. Am. 119(3), 1794–1804 (2006)

    Google Scholar 

  117. Fletcher, N.H.: Sound production by organ flue pipes. J. Acoust. Soc. Am. 60(4), 926–936 (1976)

    Google Scholar 

  118. Gibiat, V., Castellengo, M.: Period Doubling Occurences in Wind Instruments Musical Performance. Acta Acustica United with Acustica 86, 746–754 (2000)

    Google Scholar 

  119. Gilbert, J., Menguy, L., Campbell, M.: A simulation tool for brassiness studies (L). J. Acoust. Soc. Am. 123(4), 1854–1857 (2008)

    Google Scholar 

  120. von Helmholtz, H.: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik [On the sensation of tone as a physiological basis for the theory of music]. Vieweg, Braunschweig (1863)

    Google Scholar 

  121. Hirschberg, A., Gilbert, J., Msallam, R., Wijnands, A.P.J.: Shock waves in trombones. J. Acoust. Soc. Am. 99, 1754–1758 (1996)

    Google Scholar 

  122. Hirschberg, A.: Aero-acoustics of wind instruments. In: Hirschberg, A., Kergomard, J., Weinreich, G. (eds.) Mechanics of Musical Instruments. CISM Courses and Lectures, vol. 355. Springer (1995)

    Google Scholar 

  123. Howe, M.S.: Contributions to the theory of aerodynamic sound, with application to excell jet noise and the theory of the flute. J. Fluid Mech. 71(4), 625–673 (1975)

    Google Scholar 

  124. Kaykayoglu, R., Rockwell, D.: Unstable jet-edge interaction. Part 1. Instantaneous pressure fields at a single frequency. J. Fluid Mech. 169, 125–149 (1986)

    Google Scholar 

  125. Kaykayoglu, R., Rockwell, D.: Unstable jet-edge interaction Part 2: Multiple frequency pressure fields. J. Fluid Mech. 169, 151–172 (1986)

    Google Scholar 

  126. Keefe, D.H., Laden, B.: Correlation dimension of woodwind multiphonic tones. J. Acoust. Soc. Am. 90(4), 1754–1765 (1991)

    Google Scholar 

  127. Kolmogovov, A.N.: The local structure of turbulence in incompressible viscous fluid for vary large Reynolds number. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    Google Scholar 

  128. Krassnitzer, G.: Multiphonics für Klarinette mit deutschem System und andere zeitgenössische Spielarten [Multiphonics for clarinet with german system and other contemporary styles]. edition ebenos Verlag Aachen (2002)

    Google Scholar 

  129. Lottermoser, W.: Orgeln, Kirchen und Akustik [Organs, Churches, and Acoustics]. Verlag Erwin Bochinsky / Das Musikinstrument, Frankfurt a. M. (1983)

    Google Scholar 

  130. Miklós, A., Angster, J.: Properties of the Sound of Flue Organ Pipes. Acustica 86(4), 611–622 (2000)

    Google Scholar 

  131. Nederveen, C.J.: Mode coupling in the sound generation in wind instruments. In: Proceedings NAG/DAGA 2009, Rotterdam, pp. 869–872 (2009)

    Google Scholar 

  132. Norman, L., Chick, J.P., Campbell, D.M., Myers, A.: Embouchure Control of Brassiness at Constant Pitch and Dynamic Level in Orchestral Horn Playing. In: Proceedings NAG/DAGA 2009, Rotterdam, pp. 862–865 (2009)

    Google Scholar 

  133. Obataya, E., Norimoto, M.: Acoustic properties of a reed (Arundo donax L.) used for the vibrating plate of a clarinet. J. Acoust. Soc. Am. 106(2), 1106–1742 (1999)

    Google Scholar 

  134. Olivier, S., Dalmont, J.-P.: Experimental investiagion of clarinet reed operation and its consequence on the non-linear characteristics of the mouthpiece. In: Proceedings of the Stockholm Musical Acoustics Conference 2003, pp. 283–286 (2003)

    Google Scholar 

  135. Powell, A.: Vortex Action in Edgetones. J. Acoust. Soc. Am. 34(2), 163–166 (1962)

    Google Scholar 

  136. Powell, A.: On the Edgetone. J. Acoust. Soc. Am. 33(4), 395–409 (1961)

    Google Scholar 

  137. Lord Rayleigh, J.W.S.: The theory of sound (1894); Reprint Dover, NY (1945)

    Google Scholar 

  138. Lord Rayleigh, J.W.S.: Scientific Papers, vol. 1, pp. 360–371. Reprint: Dover, NY (1964)

    Google Scholar 

  139. Rioux, V.: Methods for an objective and subjective description of starting transients for some flue organ pipes: Integrating the view of an organ-builder. Acta Acustica United with Acustica 86(4), 634–641 (2000)

    Google Scholar 

  140. Saddoughi, S.G., Veeravalli, V.S.: Local isotropy in turbulent boundary layers at high Reynolds number. J. of Fluid Mechanics 268, 333–372 (1994)

    Google Scholar 

  141. Taillard, P.-A., Kergomard, J., Taillard, P.-A., Kergomard, J., Laloe, F.: Iterated maps for clarinet-like systems. Nonlinear Dynamics 62, 253–271 (2010)

    Google Scholar 

  142. Täsch, C., Wik, T., Angster, J., Miklós, A.: Attack transient analysis of flue organ pipes with different cut-up height. In: Proceedings CFA/DAGA 2004, Strasbourg (2004)

    Google Scholar 

  143. Thompson, C., Mulpur, A., Mehta, V., Chandra, K.: Transition to chaos in acoustically driven flows. J. Acoust. Soc. Am. 90(4), 2097–2108 (1991)

    Google Scholar 

  144. Tsai, C.G.: Relating the harmonic-rich sound of the Chinese flute (dizi) to the cubic non-linearity of its membrane. In: Proceedings of the Stockholm Musical Acoustics Conference 2003, pp. 303–306 (2003)

    Google Scholar 

  145. Velazques, R.V.: Ancient Aerophones with Mirliton. In: Proceedings ISGMA, Berlin, pp. 363–373 (2004)

    Google Scholar 

  146. Vergez, C., Almeida, A., Causssé, R., Rodet, X.: Toward a Simple Physical Model of Double-Reed Musical Instruments: Influence of Aero-Dynamical Losses in the Embouchure on the Coupling Between the Reed and the Bore of the Resonator. Acta Acoustica United with Acustica 89, 964–973 (2003)

    Google Scholar 

  147. Verge, M.-P., Fabre, B., Hirschberg, A., Wijnands, A.P.J.: Sound production in recorderlike instruments. I. Dimensionless amplitude of the internal acoustic field. J. Acoust. Soc. Am. 101(5), 2914–2924 (1997)

    Google Scholar 

  148. Verge, M.-P., Hirschberg, A., Caussé, R.: Sound production in recorderlike instruments. II. A simulation model. J. Acoust. Soc. Am. 101(5), 2925–2939 (1997)

    Google Scholar 

  149. Vössing, H., Kummer, J.: Beobachtung von Periodenverdopplung und Chaos bei der Trompete [Observations of period doubling and chaos with trumpets]. Fortschritte der Akustik, 916–919 (1993)

    Google Scholar 

  150. Yoshikawa, S.: A Pictorial Analysis of Jet and Vortex Behaviours during Attack Transients in Organ Pipe Models. Acta Acustica United with Acustica 86, 623–633 (2000)

    Google Scholar 

  151. Bank, B., Sujbert, L.: Generation of longitudinal vibrations in piano strings: From physics to sound synthesis. J. Acoust. Soc. Am. 117(4), 2268–2278 (2005)

    Google Scholar 

  152. Chabassier, J., Chaigne, A.: Modeling and numerical simulation of a nonlinear system of piano strings coupled to a soundboard. In: Proceedings International Congress on Acoustics, ICA 2010, Sydney, pp. 1–8 (2010)

    Google Scholar 

  153. Giordano, N.: Simple model of a piano soundboard. J. Acoust. Soc. Am. 102(2), 1159–1168 (1997)

    Google Scholar 

  154. Giordano, N., Jiang, M.: Physical Modeling of the Piano. J. Appl. Sig. Process. 7, 926–933 (2004)

    Google Scholar 

  155. Hall, D.E.: Piano string excitation. VI: Nonlinear modeling. J. Acoust. Soc. Am. 92, 95–105 (1992)

    Google Scholar 

  156. Mamou-Mani, A., Frelat, J., Besnainou, C.: Numerical simulation of a piano soundboard under downbearing. J. Acoust. Soc. Am. 123, 2401–2406 (2008)

    Google Scholar 

  157. Ortiz-Berenguer, L.I., Casajus-Quiros, F.J., Blanco-Martin, E., Ibanez-Cuenca, D.: Modeling of piano sounds using FEM simulation of soundboard vibrations. In: Joined Meeting of the American and European Acoustical Society, Acoustics 2008, Paris (2008)

    Google Scholar 

  158. Suzuki, H.: Vibration and sound radiation of a piano soundboard. J. Acoust. Soc. Am. 80, 1573–1582 (1986)

    Google Scholar 

  159. Weinreich, G.: Coupled piano strings. J. Acoust. Soc. Am. 62, 1474–1484 (1977)

    Google Scholar 

  160. Wogram, K.: Acoustical research on pianos. Part I: Vibrational characteristics of the soundboard. Das Musikinstrument 24, 380–404 (1980)

    Google Scholar 

  161. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, NY (1996)

    Google Scholar 

  162. Argyris, J., Faust, G., Haase, M.: Die Entdeckung des Chaos [Discovery of Chaos]. Vieweg (1995)

    Google Scholar 

  163. Bader, R.: Additional modes in a Balinese gender plate due to its trapezoid shape. In: Bader, R., Neuhaus, C., Morgenstern, U. (eds.) Concepts, Experiments, and Fieldwork: Studies in Systematic Musicology and Ethnomusicology, pp. 95–112. Peter Lang Verlag (2009)

    Google Scholar 

  164. Bader, R.: Fractal correlation dimensions and discrete-pseudo-phase-plots of percussion instruments in relation to cultural world view. Ingenierias, Octubre-Diciembre, V (17), 1–11 (2002)

    Google Scholar 

  165. Behrmann, A.: Global and local dimensions of vocal dynamics. J. Acoust. Soc. Am. 105(1), 432–443 (1999)

    Google Scholar 

  166. Behrmann, A., Baken, R.J.: Correlation dimension of electroglottographic data from healthy and pathologic subjects. J. Acoust. Soc. Am. 102(4), 2371–2379 (1997)

    Google Scholar 

  167. Berry, D.A., Montequin, D.W., Tayama, N.: High-speed digital imaging of the medial surface of the vocal folds. J. Acoust. Soc. Am. 110(5), 2539–2547 (2001)

    Google Scholar 

  168. Berry, F.A., Herzel, H., Tieze, I.R., Story, B.H.: Bifurcations in Excised Larynx Experiments. J. of Voice 10, 129–138 (1996)

    Google Scholar 

  169. Berry, D.A., Herzel, H., Titze, I.R., Krischer, K.: Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. J. Acoust. Soc. Am. 95(6), 3595–3604 (1994)

    Google Scholar 

  170. Borg, I.: Entwicklung von akustischen Optimierungsverfahren für Stabspiele und Membraninstrumente [Development of acoustical optimization methods for musical bars and membrane instruments]. PTB Report, Projekt 5267, Braumschweig (1983)

    Google Scholar 

  171. Fitch, T., Neubauer, J., Herzel, H.: Calls out of Chaos: The Adaptive Significance of Nonlinear Phenomena in Mammalian Vocal Production. Animal Behavior 63(3), 407–418 (2002)

    Google Scholar 

  172. Fletcher, N.H.: Nonlinear frequency shifts in quasi-spherical cap shells: Pitch glide in Chinese gongs. J. Acoust. Soc. Am. 78, 2069–2073 (1985)

    Google Scholar 

  173. Gibiat, V.: Phase space representations of acoustical musical signals. J. of Sound and Vibration 123(3), 529–536 (1988)

    Google Scholar 

  174. Gibiat, V., Castellengo, M.: Period Doubling Occurences in Wind Instruments Musical Performance. Acustica 86, 746–754 (2000)

    Google Scholar 

  175. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, NY (1983)

    Google Scholar 

  176. Ishizaka, K.: Equivalent lumped-mass models of vocal fold vibration. In: Stevens, K.N., Hirano, M. (eds.) Vocal Fold Physiology, pp. 231–244. University of Tokyo (1981)

    Google Scholar 

  177. Jing, J.J., Zhang, Y.: Chaotic vibration induced by turbulent noise in a two-mass model of vocal folds. J. Acoust. Soc. Am. 112(5), 2127–2133 (2002)

    Google Scholar 

  178. Jing, J.J., Zhang, Y.: Modeling of chaotic vibrations in symmetric vocal folds. J. Acoust. Soc. Am. 110(4), 2120–2128 (2001)

    Google Scholar 

  179. Krieg, R.D., Key, S.W.: Transient shell Response by Numerical Time Integration. International J. for Numerical Methods in Engineering 7, 273–286 (1973)

    Google Scholar 

  180. Lee, M.-H., Lee, J.-N., Soh, K.-S.: Chaos in segments from Korean traditional singing and Western singing. J. Acoust. Soc. Am. 103(2), 1175–1182 (1998)

    Google Scholar 

  181. Lindestad, P.-Å., Södersten, M., Merker, B., Granqvist, S.: Voice Source Characteristics in Mongolian “Throat Singing” Studied with High-Speed Imaging Technique, Acoustic Spectra, and Inverse Filtering. J. of Voice 15(1), 78–85 (2001)

    Google Scholar 

  182. Lucero, J.C., Koenig, L.L., Lourenço, K.G., Ruty, N., Pelorson, X.: A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis. J. Acoust. Soc. Am. 129(3), 1568–1579 (2011)

    Google Scholar 

  183. Lucero, J.C.: A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset. J. Acoust. Soc. Am. 105(1), 423–431 (1999)

    Google Scholar 

  184. Lucero, J.C.: Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region. J. Acoust. Soc. Am. 94(6), 3104–3111 (1993)

    Google Scholar 

  185. Mergell, P., Herzel, H., Tietze, I.R.: Irregular vocal-fold vibration - High-speed observation and modeling. J. Acoust. Soc. Am. 108(6), 2996–3002 (2000)

    Google Scholar 

  186. Mergell, P., Herzel, H., Wittenberg, T., Tigges, M., Eysholdt, U.: Phonation onset: Vocal fold modeling and high-speed glottography. J. Acoust. Soc. Am. 104(1), 464–470 (1998)

    Google Scholar 

  187. Neubauer, J., Edgerton, M., Herzel, H.: Nonlinear Phenomena in Contemporary Vocal Music. J. of Voice 18(1), 1–12 (2004)

    Google Scholar 

  188. Riede, T., Herzel, H., Mehwald, D., Seidner, W., Trumler, E., Böhme, G., Tembrock, G.: Nonlinear phaenomena in the natural howling of a dog-wolf mix. J. Acoust. Soc. Am. 108(4), 1435–1442 (2000)

    Google Scholar 

  189. Rossing, T.D., Fletcher, N.H.: Nonlinear vibrations in plates and gongs. J. Acoust. Soc. Am. 73, 345–351 (1983)

    Google Scholar 

  190. Steinecke, I., Herzel, H.: Birurcations in an asymmetric vocal fold model. J. Acoust. Soc. Am. 97, 1874–1884 (1995)

    Google Scholar 

  191. S̃vec, J.G., Schutte, H.K., Miller, D.G.: On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges. J. Acoust. Soc. Am. 106(3), 1523–1531 (1999)

    Google Scholar 

  192. Tinnsten, M., Carlsson, P.: Numerical Optimization of Violin Top Plates. Acta Acustica United with Acustica 88, 278–285 (2002)

    Google Scholar 

  193. Titze, I.R., Schmidt, S.S., Titze, M.R.: Phonation threshold pressure in a physical model of the vocal fold mucosa. J. Acoust. Soc. Am. 97(5), 3080–3084 (1995)

    Google Scholar 

  194. Titze, I.R.: The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552 (1988)

    Google Scholar 

  195. Tokuda, I.T., Zemke, M., Kob, M., Herzel, H.: Biomechanical modeling of register transitions and the role of vocal tract resonators. J. Acoust. Soc. Am. 127(3), 1528–1536 (2010)

    Google Scholar 

  196. Tokuda, I.T., Horáček, J., Švec, J.G., Herzel, H.: Bifurcation and chaos in register transitions of excised larynx experiments. Chaos 18, 013102, 1–12 (2008)

    Google Scholar 

  197. Tokuda, I., Riede, T., Neubauer, J., Owren, M.J., Herzel, H.: Nonlinear analysis of irregular animal vocalizations. J. Acoust. Soc. Am. 111(6), 2908–2919 (2002)

    Google Scholar 

  198. Touzé, C., Chaigne, A.: Lyapunov Exponents from Experimental Time Series: Application to Cymbal Vibrations. Acustica 86, 557–567 (2000)

    Google Scholar 

  199. Vilkman, E., Alku, P., Laukkanen, A.: Vocal fold collision mass as a differentiator between registers in a low-pitch range. J. of Voice 9, 66–73 (1995)

    Google Scholar 

  200. Wilden, I., Herzel, H., Peters, G., Ternbrock, G.: Subharmonics, Biphonation and Deterministic Chaos in Mammal Vocalization. Bioacoustics 9, 171–196 (1998)

    Google Scholar 

  201. Xue, Q., Mittal, R., Zheng, X., Bielamowicz, S.: A computational study of the effect of vocal-dold asymmetry on phonation. J. Acoust. Soc. Am. 128(2), 818–827 (2010)

    Google Scholar 

  202. Zañartu, M., Mehta, D.D., Ho, J.C., Wodicka, G.R., Hillman, R.E.: Observation and analysis of in vivo vocal fold tissue instabilities produced by nonliear source-filter coupling: A case study. J. Acoust. Soc. Am. 129(1), 326–339 (2011)

    Google Scholar 

  203. Zhang, Y., Jiang, J.J.: Chaotic vibrations of a vocal fold model with a unilateral polyp. J. Aoucst. Soc. Am. 115(3), 1266–1269 (2004)

    Google Scholar 

  204. Zhang, Y., Jiang, J., Rahn III, D.A.: Vocal fold vibrations in Parkinson’s disease with a nonlinear model. Chaos 15, 033903, 1–10 (2005)

    Google Scholar 

  205. Zimmermann, K.: Nichtlineare Theorien von Membranen und deren Berechnung nach einer Finite-Differenzen-Energie-Methode [Nonlinear theories of membranes and their calculation using a Finite-Difference-Energy method]. Sonderforschungsbericht 64, Weitgespannte Flächentragwerke, Mitteilung 76/1985, Institut für Mechanik (Bauwesen), Uni Stuttgart (1985)

    Google Scholar 

  206. Bader, R.: Finite-element calculation of a bass drum. J. Acoust. Soc. Am. 119, 3290 (2006)

    Google Scholar 

  207. Fletcher, N.H.: Nonlinear frequency shifts in quasispherical-cap shells: Pitch glide in Chinese gongs. J. Acoust. Soc. Am. 78, 2069–2073 (1985)

    Google Scholar 

  208. von Hornbostel, E., Sachs, C.: Systematik der Musikinstrumente. Ein Versuch [Classification of musical instruments. An attempt]. Zeitschrift für Ethnologie 46(4-5), 553–590 (1914)

    Google Scholar 

  209. Legge, K.A., Fletcher, N.H.: Nonlinearity, chaos, and the sound of shallow gongs. J. Acoust. Soc. Am. 86(6), 2439–2443 (1989)

    Google Scholar 

  210. Legge, K.A., Fletcher, N.H.: Non-linear mode coupling in symmetrically kinked bars. J. Sound and Vibration 118(1), 23–34 (1987)

    Google Scholar 

  211. Legge, K.A., Fletcher, N.H.: Nonlinear generation of missing modes on a vibrating string. J. Acoust. Soc. Am. 76(1), 5–12 (1984)

    Google Scholar 

  212. Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley, NY (1987)

    Google Scholar 

  213. Reissner, E.: On vibrations of shallow spherical shells. J. Appl. Phys. 17, 1038–1042 (1946)

    Google Scholar 

  214. Rossing, T.D., Fletcher, N.H.: Nonlinear vibrations in plates and gongs. J. Acoust. Soc. Am. 73, 345–351 (1983)

    Google Scholar 

  215. Szwerc, R.P.: Power flow in coupled bending and longitudinal waves in beams. J. Acoust. Soc. Am. 107(6), 3186–3195 (2000)

    Google Scholar 

  216. Touzê, C., Chaigne, A.: Lyapunov Exponents from Experimental Time Series: Application to Cymbal Vibrations. Acta Acustica United with Acustica 86, 557–567 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bader .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bader, R. (2013). Musical Instruments. In: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology. Current Research in Systematic Musicology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36098-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36098-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36097-8

  • Online ISBN: 978-3-642-36098-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics