Skip to main content

Mapping a Polygon with Holes Using a Compass

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7718))

Abstract

We consider a simple robot inside a polygon \(\mathcal{P}\) with holes. The robot can move between vertices of \(\mathcal{P}\) along lines of sight. When sitting at a vertex, the robot observes the vertices visible from its current location, and it can use a compass to measure the angle of the boundary of \(\mathcal{P}\) towards north. The robot initially only knows an upper bound \(\bar{n}\) on the total number of vertices of \(\mathcal{P}\). We study the mapping problem in which the robot needs to infer the visibility graph G vis of \(\mathcal{P}\) and needs to localize itself within G vis. We show that the robot can always solve this mapping problem. To do this, we show that the minimum base graph of G vis is identical to G vis itself. This proves that the robot can solve the mapping problem, since knowing an upper bound on the number of vertices was previously shown to suffice for computing G vis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  2. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 269–287 (1998)

    Google Scholar 

  3. Bilò, D., Disser, Y., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Reconstructing visibility graphs with simple robots. Theoretical Computer Science 444, 52–59 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Mathematics 243(1-3), 21–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in polygonal environments: A hierarchy. In: Proceedings of the Fourth International Workshop on Algorithmic Aspects of Wireless Sensor Networks, pp. 111–124 (2008)

    Google Scholar 

  6. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons: How robots benefit from looking back. Algorithmica (2011)

    Google Scholar 

  7. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Telling convex from reflex allows to map a polygon. In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science, pp. 153–164 (2011)

    Google Scholar 

  8. Chen, D., Wang, H.: An improved algorithm for reconstructing a simple polygon from the visibility angles. Computational Geometry: Theory and Applications 45, 254–257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Disser, Y.: Mapping Polygons. Ph.D. thesis, ETH Zurich (2011)

    Google Scholar 

  10. Disser, Y., Mihalák, M., Widmayer, P.: Reconstruction of a polygon from angles without prior knowledge of the size. Tech. Rep. 700, ETH Zürich, Institute of Theoretical Computer Science (November 2010)

    Google Scholar 

  11. Disser, Y., Mihalák, M., Widmayer, P.: A polygon is determined by its angles. Computational Geometry: Theory and Applications 44, 418–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donald, B.R.: On information invariants in robotics. Artificial Intelligence 72(1-2), 217–304 (1995)

    Article  Google Scholar 

  13. Ganguli, A., Cortés, J., Bullo, F.: Distributed deployment of asynchronous guards in art galleries. In: Proceedings of the 2006 American Control Conference, pp. 1416–1421 (2006)

    Google Scholar 

  14. Gfeller, B., Mihalak, M., Suri, S., Vicari, E., Widmayer, P.: Counting targets with mobile sensors in an unknown environment. In: Proceedings of the 3rd International Workshop on Algorithmic Aspects of Wireless Sensor Networks, pp. 32–45 (2007)

    Google Scholar 

  15. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press (2007)

    Google Scholar 

  16. Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graph theory. In: Proceedings of the India-Taiwan Conference on Discrete Mathematics, pp. 44–54 (2009)

    Google Scholar 

  17. Katsev, M., Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Mapping and pursuit-evasion strategies for a simple wall-following robot. IEEE Transactions on Robotics 27(1), 113–128 (2011)

    Article  Google Scholar 

  18. O’Kane, J.M., LaValle, S.M.: On comparing the power of robots. International Journal of Robotics Research 27(1), 5–23 (2008)

    Article  Google Scholar 

  19. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local visibility to global geometry. International Journal of Robotics Research 27(9), 1055–1067 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Disser, Y., Ghosh, S.K., Mihalák, M., Widmayer, P. (2013). Mapping a Polygon with Holes Using a Compass. In: Bar-Noy, A., Halldórsson, M.M. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2012. Lecture Notes in Computer Science, vol 7718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36092-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36092-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36091-6

  • Online ISBN: 978-3-642-36092-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics