Skip to main content

Interactive Modes of Polymer Chromatography

  • Chapter
  • First Online:
Multidimensional HPLC of Polymers

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

Interaction chromatography is based on the retention of solute molecules by interaction with the surface of the stationary phase including the pore surface. This interaction can be due to adsorption, hydrophobic, polar or ionic interactions or dispersive forces. Intermittent capture and release of solute molecules by the stationary phase are controlled by two basically different mechanisms or some combinations thereof. In regard to adsorption-desorption phenomena, an abrupt process is the critical step leading to sorption or desorption. This process is typified by molecular desorption from surfaces where molecules can detach, and then do so suddenly, if they possess sufficient activation energy to cause the necessary rearrangement or rupture of chemical or physical bonding. Quite different in effect are the diffusion-controlled sorption-desorption kinetics where a change occurs only gradually as molecules diffuse in and out of localized regions [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giddings JC (1965) Dynamics of chromatography. Marcel Dekker, New York, NY

    Google Scholar 

  2. Yau WW, Kirkland JJ, Bly DD (1979) Modern size exclusion chromatography. Practice of gel permeation and gel filtration chromatography. Wiley Interscience, New York, NY

    Google Scholar 

  3. Janca J (1984) Steric exclusion liquid chromatography. Dekker, New York, NY

    Google Scholar 

  4. Glöckner G (1987) Polymer characterization by liquid chromatography. Elsevier, Amsterdam

    Google Scholar 

  5. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Book  Google Scholar 

  6. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography. Practice of gel permeation and gel filtration chromatography. Wiley, Hoboken, NJ

    Book  Google Scholar 

  7. Striegel AM (2000) In: Striegel AM (ed) Multiple detection in size exclusion chromatography. ACS Symposium Series 893, ACS, Washington, DC

    Google Scholar 

  8. Trathnigg B (2006) Size-exclusion chromatography of polymers. Encyclopedia of analytical chemistry, John Wiley & Sons, Chichester

    Google Scholar 

  9. Glöckner G (1991) Gradient HPLC and chromatographic cross-fractionation. Springer, Berlin

    Book  Google Scholar 

  10. Glöckner G (1982) Polymercharakterisierung durch Fluessigchromatographie. Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  11. Mori S (1995) Size-exclusion chromatography and nonexclusion liquid chromatography for the characterization of styrene copolymers. In: Provder T, Barth HG, Urban MW (eds) Chromatographic characterization of polymers. Hyphenated and multidimensional Techniques. Adv Chem Ser 247, ACS, Washington, DC

    Google Scholar 

  12. Teramachi S, Hasegawa A, Shima Y, Akatsuka M, Nakayama M (1979) Macromolecules 12:992

    Article  CAS  Google Scholar 

  13. Mourey TH (1986) J Chromatogr 357:101

    Article  CAS  Google Scholar 

  14. Mori S, Uno Y (1987) Anal Chem 59:90

    Article  CAS  Google Scholar 

  15. Mori S, Mouri M (1989) Anal Chem 61:2171

    Article  CAS  Google Scholar 

  16. Mori S (1991) J Chromatogr 541:375

    Article  CAS  Google Scholar 

  17. Mori S (1990) Anal Chem 62:1902

    Article  CAS  Google Scholar 

  18. Glöckner G, van den Berg JHM, Meijerink NLJ, Scholte TG, Koningsveld R (1984) Macromolecules 17:962

    Article  Google Scholar 

  19. Glöckner G, van den Berg JHM (1986) J Chromatogr 352:511

    Article  Google Scholar 

  20. Schulz R, Engelhardt H (1990) Chromatographia 29:325

    Article  Google Scholar 

  21. Sparidans RW, Claessens HA, van Doremaele GHJ, van Herk AM (1990) J Chromatogr 508:319

    Article  CAS  Google Scholar 

  22. Sato H, Takeuchi H, Tanaka Y (1986) Macromolecules 19:2613

    Article  CAS  Google Scholar 

  23. Sato H, Takeuchi H, Suzuki S, Tanaka Y (1984) Macromol Chem Rapid Commun 5:719

    Article  CAS  Google Scholar 

  24. Teramachi S, Hasegawa A, Motoyama K (1990) Polym J 22:480

    Article  Google Scholar 

  25. Sato H, Mitsutani K, Shimizu I, Tanaka Y (1988) J Chromatogr 447:387

    CAS  Google Scholar 

  26. Pasch H, Trathnigg B (1998) HPLC of polymers. Springer, Berlin

    Google Scholar 

  27. Augenstein M, Mueller MA (1990) Makromol Chem 191:2151

    Article  CAS  Google Scholar 

  28. Belenkii BG, Gankina ES, Tennikov MB, Vilenchik LZ (1978) J Chromatogr 147:99

    Article  CAS  Google Scholar 

  29. Entelis SG, Evreinov VV, Gorshkov AV (1986) Adv Polym Sci 76:129

    Article  Google Scholar 

  30. Entelis SG, Evreinov VV, Kuzaev AI (1985) Reactive oligomers. Khimiya, Moscow

    Google Scholar 

  31. Macko T, Hunkeler D (2003) Adv Polym Sci 163:61

    CAS  Google Scholar 

  32. Chang T (2003) Adv Polym Sci 163:1

    Article  CAS  Google Scholar 

  33. Pasch H, Brinkmann C, Gallot Y (1993) Polymer 34:4100

    Article  CAS  Google Scholar 

  34. Pasch H (1996) Macromol Symp 110:107

    Article  CAS  Google Scholar 

  35. Pasch H, Esser E, Kloninger C, Hadjichristidis N (2001) Macromol Chem Phys 202:1424

    Article  Google Scholar 

  36. Pasch H, Mequanint K, Adrian J (2002) e-Polymers No. 005

    Google Scholar 

  37. Mass V, Bellas V, Pasch H (2008) Macromol Chem Phys 209:2026

    Article  CAS  Google Scholar 

  38. Hunkeler D, Janco M, Berek D (1996) In: Potschka M, Dubin PL (eds) Strategies in size exclusion chromatography. American Chemical Society, Washington, DC

    Google Scholar 

  39. Bartkowiak A, Hunkeler D (1999) In: Provder T (ed) Chromatography of polymers, hyphenated and multidimensional techniques. American Chemical Society, Washington, DC

    Google Scholar 

  40. Berek D (1998) Macromolecules 31:8517

    Article  CAS  Google Scholar 

  41. Berek D (2001) Mater Res Innovat 4:365

    Article  CAS  Google Scholar 

  42. Lee HC, Chang T (1996) Polymer 37:5747

    Article  CAS  Google Scholar 

  43. Chang T, Lee W, Lee HC, Cho D, Park S (2002) Am Lab 34:39

    CAS  Google Scholar 

  44. Lee W, Lee HC, Chang T, Kim SB (1998) Macromolecules 31:344

    Article  CAS  Google Scholar 

  45. Lee W, Lee H, Cha J, Chang T, Hanley KJ, Lodge TP (2000) Macromolecules 33:5111

    Article  CAS  Google Scholar 

  46. Lee HC, Chang T, Harville S, Mays JW (1998) Macromolecules 31:690

    Article  CAS  Google Scholar 

  47. Perny S, Allgaier J, Cho D, Lee W, Chang T (2001) Macromolecules 34:5408

    Article  CAS  Google Scholar 

  48. Lee HC, Lee H, Lee W, Chang T, Roovers J (2000) Macromolecules 33:8119

    Article  CAS  Google Scholar 

  49. Park S, Cho D, Ruy J, Kwon K, Lee W, Chang T (2002) Macromolecules 35:5974

    Article  CAS  Google Scholar 

  50. Im K, Park S, Cho D, Chang T, Lee K, Choi N (2004) Anal Chem 76:2638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pasch, H., Trathnigg, B. (2013). Interactive Modes of Polymer Chromatography. In: Multidimensional HPLC of Polymers. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36080-0_3

Download citation

Publish with us

Policies and ethics