Skip to main content

Selenium Atom-Specific Mutagenesis (SAM) for Crystallography, DNA Nanostructure Design, and Other Applications

  • Chapter
  • First Online:
DNA Nanotechnology
  • 3455 Accesses

Abstract

Since oxygen and selenium are in the same elemental family, the replacement of oxygen in nucleic acids with selenium does not significantly change the local as well as overall structures, which preserves the nucleic acid structures in a predictable manner. Furthermore, the valuable differences in chemical and electronic properties enable various functions and applications, including crystallization, phase determination, and high-resolution structure determination in X-ray crystallography, base-pair high fidelity, nanotechnology, and molecular imaging. This chapter briefly introduces the selenium-modified nucleic acids (SeNA), the selenium atom-specific mutagenesis (SAM), and their potentials in DNA nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Beaucage S, Caruthers M (1981) Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862

    Article  CAS  Google Scholar 

  3. Matteucci MD, Caruthers MH (1981) Synthesis of deoxyoligonucleotides on a polymer support. J Am Chem Soc 103:3185–3191

    Article  CAS  Google Scholar 

  4. Uhlmann E, Peyman A (1990) Antisense oligonucleotides: a new therapeutic principle. Chem Rev 90:543–584

    Article  CAS  Google Scholar 

  5. Milligan JF, Matteucci MD, Martin JC (1993) Current concepts in antisense drug design. J Med Chem 36:1923–1937

    Article  CAS  Google Scholar 

  6. Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA: RNA duplexes. Nucleic Acids Res 25:4429–4443

    Article  CAS  Google Scholar 

  7. Leumann CJ (2002) DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem 10:841–854

    Article  CAS  Google Scholar 

  8. Prakash TP, Bhat B (2007) 2′-modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 7:641–649

    Article  CAS  Google Scholar 

  9. Weisbrod SH, Marx A (2008) Novel strategies for the site-specific covalent labelling of nucleic acids. Chem Commun (Camb) 44:5675–5685

    Google Scholar 

  10. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  Google Scholar 

  11. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  CAS  Google Scholar 

  12. Manoharan M (2004) RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8:570–579

    Article  CAS  Google Scholar 

  13. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    Article  CAS  Google Scholar 

  14. Gaynor JW, Campbell BJ, Cosstick R (2010) RNA interference: a chemist’s perspective. Chem Soc Rev 39:4169–4184

    Article  CAS  Google Scholar 

  15. Sheng J, Huang Z (2010) Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem Biodivers 7:753–785

    Article  CAS  Google Scholar 

  16. Lin L, Sheng J, Huang Z (2011) Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 40:4591–4602

    Article  CAS  Google Scholar 

  17. Sun H, Sheng J, Hassan AEA, Jiang S, Gan J, Huang Z (2012) Novel RNA base pair with higher specificity using single selenium atom. Nucleic Acids Res 40:5171–5179

    Article  CAS  Google Scholar 

  18. Hassan AEA, Sheng J, Zhang W, Huang Z (2010) High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc 132:2120–2121

    Article  CAS  Google Scholar 

  19. Pallan PS, Prakash TP, Li F, Eoff RL, Manoharan M, Egli M (2009) A conformational transition in the structure of a 2′-thiomethyl-modified DNA visualized at high resolution. Chem Commun (Camb) 15:2017–2019

    Google Scholar 

  20. Moroder H, Kreutz C, Lang K, Serganov A, Micura R (2006) Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J Am Chem Soc 128:9909–9918

    Article  CAS  Google Scholar 

  21. Sheng J, Hassan AEA, Huang Z (2009) Synthesis of the first tellurium-derivatized oligonucleotides for structural and functional studies. Chem Eur J 15:10210–10216

    Article  CAS  Google Scholar 

  22. Sheng J, Hassan AEA, Zhang W, Zhou J, Xu B, Soares AS, Huang Z (2011) Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization. Nucleic Acids Res 39:3962–3971

    Article  CAS  Google Scholar 

  23. Jiang S, Sheng J, Huang Z (2011) Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides. Curr Protoc Nucleic Acid Chem Chapter 1, Unit1.25.

    Google Scholar 

  24. Carrasco N, Ginsburg D, Du Q, Huang Z (2001) Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides Nucleotides Nucleic Acids 20:1723–1734

    Article  CAS  Google Scholar 

  25. Du Q, Carrasco N, Teplova M, Wilds CJ, Egli M, Huang Z (2002) Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J Am Chem Soc 124:24–25

    Article  CAS  Google Scholar 

  26. Teplova M, Wilds CJ, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M (2002) Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion. Biochimie 84:849–858

    Article  CAS  Google Scholar 

  27. Jiang J, Sheng J, Carrasco N, Huang Z (2007) Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res 35:477–485

    Article  CAS  Google Scholar 

  28. Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z (2004) Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res 32:1638–1646

    Article  CAS  Google Scholar 

  29. Buzin Y, Carrasco N, Huang Z (2004) Synthesis of selenium-derivatized cytidine and oligonucleotides for X-ray crystallography using MAD. Org Lett 6:1099–1102

    Article  CAS  Google Scholar 

  30. Höbartner C, Micura R (2004) Chemical synthesis of selenium-modified oligoribonucleotides and their enzymatic ligation leading to an U6 SnRNA stem-loop segment. J Am Chem Soc 126:1141–1149

    Article  Google Scholar 

  31. Höbartner C, Rieder R, Kreutz C, Puffer B, Lang K, Polonskaia A, Serganov A, Micura R (2005) Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J Am Chem Soc 127:12035–12045

    Article  Google Scholar 

  32. Sheng J, Jiang J, Salon J, Huang Z (2007) Synthesis of a 2′-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org Lett 9:749–752

    Article  CAS  Google Scholar 

  33. Salon J, Sheng J, Gan J, Huang Z (2010) Synthesis and crystal structure of 2′-se-modified guanosine containing DNA. J Org Chem 75:637–641

    Article  CAS  Google Scholar 

  34. Sheng J, Salon J, Gan J, Huang Z (2010) Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Sci China Chem 53:78–85

    Article  CAS  Google Scholar 

  35. Gott JM, Willis MC, Koch TH, Uhlenbeck OC (1991) A specific, UV-induced RNA-protein cross-link using 5-bromouridine-substituted RNA. Biochemistry 30:6290–6295

    Article  CAS  Google Scholar 

  36. Ennifar E, Carpentier P, Ferrer J, Walter P, Dumas P (2002) X-ray-induced debromination of nucleic acids at the BrK absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr 58:1262–1268

    Article  CAS  Google Scholar 

  37. Reist E, Gueffroy D, Goodman L (1964) Synthesis of 4-thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. J Am Chem Soc 86:5658–5663

    Article  CAS  Google Scholar 

  38. Haeberli P, Berger I, Pallan PS, Egli M (2005) Syntheses of 4′-thioribonucleosides and thermodynamic stability and crystal structure of RNA oligomers with incorporated 4′-thiocytosine. Nucleic Acids Res 33:3965–3975

    Article  CAS  Google Scholar 

  39. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49:1624–1634

    Article  CAS  Google Scholar 

  40. Inoue N, Shionoya A, Minakawa N, Kawakami A, Ogawa N, Matsuda A (2007) Amplification of 4′-thioDNA in the presence of 4′-thio-dTTP and 4′-thio-dCTP, and 4′-thioDNA-directed transcription in vitro and in mammalian cells. J Am Chem Soc 129:15424–15425

    Article  CAS  Google Scholar 

  41. Inagaki Y, Minakawa N, Matsuda A (2007) Synthesis of 4′-selenoribonucleosides. Nucleic Acids Symp Ser 51:139–140

    Google Scholar 

  42. Naka T, Minakawa N, Abe H, Kaga D, Matsuda A (2000) The stereoselective synthesis of 4′-thioribonucleosides via the Pummerer reaction. J Am Chem Soc 122:7233–7243

    Article  CAS  Google Scholar 

  43. Inagaki Y, Minakawa N, Matsuda A (2008) Synthesis and properties of oligonucleotides containing 4′-selenoribonucleosides. Nucleic Acids Symp Ser 52:329–330

    Google Scholar 

  44. Jeong LS, Tosh DK, Kim HO, Wang T, Hou X, Yun HS, Kwon Y, Lee SK, Choi J, Zhao LX (2008) First synthesis of 4′-selenonucleosides showing unusual Southern conformation. Org Lett 10:209–212

    Article  CAS  Google Scholar 

  45. Jayakanthan K, Johnston BD, Pinto BM (2008) Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr Res 343:1790–1800

    Article  CAS  Google Scholar 

  46. Watts JK, Johnston BD, Jayakanthan K, Wahba AS, Pinto BM, Damha MJ (2008) Synthesis and biophysical characterization of oligonucleotides containing a 4′-selenonucleotide. J Am Chem Soc 130:8578–8579

    Article  CAS  Google Scholar 

  47. Alexander V, Choi WJ, Chun J, Kim HO, Jeon JH, Tosh DK, Lee HW, Chandra G, Choi J, Jeong LS (2010) A new DNA building block, 4′-selenothymidine: synthesis and modification to 4′-seleno-AZT as a potential anti-HIV agent. Org Lett 12:2242–2245

    Article  CAS  Google Scholar 

  48. Mori K, Boiziau C, Cazenave C, Matsukura M, Subasinghe C, Cohen JS, Broder S, Toulmé JJ, Stein CA (1989) Phosphoroselenoate oligodeoxynucleotides: synthesis, physico-chemical characterization, anti-sense inhibitory properties and anti-HIV activity. Nucleic Acids Res 17:8207–8219

    Article  CAS  Google Scholar 

  49. Wilds CJ, Pattanayek R, Pan C, Wawrzak Z, Egli M (2002) Selenium-assisted nucleic acid crystallography: use of phosphoroselenoates for MAD phasing of a DNA structure. J Am Chem Soc 124:14910–14916

    Article  CAS  Google Scholar 

  50. Egli M, Pallan PS, Pattanayek R, Wilds CJ, Lubini P, Minasov G, Dobler M, Leumann CJ, Eschenmoser A (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J Am Chem Soc 128:10847–10856

    Article  CAS  Google Scholar 

  51. Pallan PS, Egli M (2007) Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures. Nat Protoc 2:640–646

    Article  CAS  Google Scholar 

  52. Baraniak J, Korczynski D, Kaczmarek R, Stec WJ (1999) Tetra-thymidine phosphorofluoridates via tetra-thymidine phosphoro-selenoates: synthesis and stability. Nucleosides Nucleotides 18:2147–2154

    Article  CAS  Google Scholar 

  53. Stawinski J, Thelin M (1994) Nucleoside H-phosphonates. 14. Synthesis of nucleoside phosphoroselenoates and phosphorothioselenoates via stereospecific selenization of the corresponding H-phosphonate and H-phosphonothioate diesters with the aid of new selenium-transfer reagent, 3H-1,2-benzothiaselenol-3-one. J Org Chem 59:130–136

    Article  CAS  Google Scholar 

  54. Bollmark M, Stawinski J (2001) A new selenium-transferring reagent-triphenylphosphine selenide. Chem Commun (Camb) 8:771–772

    Google Scholar 

  55. Holloway GA, Pavot C, Scaringe SA, Lu Y, Rauchfuss TB (2002) An organometallic route to oligonucleotides containing phosphoroselenoate. Chembiochem 3:1061–1065

    Article  CAS  Google Scholar 

  56. Tram K, Wang X, Yan H (2007) Facile synthesis of oligonucleotide phosphoroselenoates. Org Lett 9:5103–5106

    Article  CAS  Google Scholar 

  57. Guga P, Maciaszek A, Stec WJ (2005) Oxathiaphospholane approach to the synthesis of oligodeoxyribonucleotides containing stereodefined internucleotide phosphoroselenoate function. Org Lett 7:3901–3904

    Article  CAS  Google Scholar 

  58. Caton-Williams J, Huang Z (2008) Synthesis and DNA-polymerase incorporation of colored 4-selenothymidine triphosphate for polymerase recognition and DNA visualization. Angew Chem Int Ed Engl 47(1723–1725)

    Google Scholar 

  59. Sintim HO, Kool ET (2006) Enhanced base pairing and replication efficiency of thiothymidines, expanded-size variants of thymidine. J Am Chem Soc 128:396–397

    Article  CAS  Google Scholar 

  60. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:148–153

    Article  CAS  Google Scholar 

  61. Shohda K, Okamoto I, Wada T, Seio K, Sekine M (2000) Synthesis and properties of 2′-O-methyl-2-thiouridine and oligoribonucleotides containing 2′-O-methyl-2-thiouridine. Bioorg Med Chem Lett 10:1795–1798

    Article  CAS  Google Scholar 

  62. Ueda T, Iida Y, Ikeda K, Mizuno Y (1966) Synthesis of 2,4-dithiouridine and 2-thiocytidine. Chem Pharm Bull 14:666–667

    CAS  Google Scholar 

  63. Vormbrock R, Morawietz R, Gassen HG (1974) Codon-anticodon interaction studies with trinucleoside diphosphates containing 2-thiouridine, 4-thiouridine, 2,4-diethiouridine, or 2-thiocytidine. Biochim Biophys Acta 340:348–358

    Article  CAS  Google Scholar 

  64. Connolly BA, Newman PC (1989) Synthesis and properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-pyrimidinone-1-beta-D(2′-deoxyriboside) and 2-thiothymidine. Nucleic Acids Res 17:4957–4974

    Article  CAS  Google Scholar 

  65. Rajeev KG, Prakash TP, Manoharan M (2003) 2′-modified-2-thiothymidine oligonucleotides. Org Lett 5:3005–3008

    Article  CAS  Google Scholar 

  66. Kumar RK, Davis DR (1997) Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 25:1272–1280

    Article  CAS  Google Scholar 

  67. Houssier C, Degée P, Nicoghosian K, Grosjean H (1988) Effect of uridine dethiolation in the anticodon triplet of tRNA(Glu) on its association with tRNA(Phe). J Biomol Struct Dyn 5:1259–1266

    Article  CAS  Google Scholar 

  68. Agris PF, Söll D, Seno T (1973) Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry 12:4331–4337

    Article  CAS  Google Scholar 

  69. Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF (1999) Single atom modification (O–>S) of tRNA confers ribosome binding. RNA 5:188–194

    Article  CAS  Google Scholar 

  70. Diop-Frimpong B, Prakash TP, Rajeev KG, Manoharan M, Egli M (2005) Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2′-O-[2-(methoxy)ethyl]-2-thiothymidines. Nucleic Acids Res 33:5297–5307

    Article  CAS  Google Scholar 

  71. Coleman R, Siedlecki J (1992) Synthesis of a 4-thio-2‘-deoxyuridine containing oligonucleotide. Development of the thiocarbonyl group as a linker element. J Am Chem Soc 114:9229–9230

    Article  CAS  Google Scholar 

  72. Christopherson MS, Broom AD (1991) Synthesis of oligonucleotides containing 2‘-deoxy-6-thioguanosine at a predetermined site. Nucleic Acids Res 19:5719–5724

    Article  CAS  Google Scholar 

  73. Rappaport HP (1988) The 6-thioguanine/5-methyl-2-pyrimidinone base pair. Nucleic Acids Res 16:7253–7267

    Article  CAS  Google Scholar 

  74. Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P (1998) Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. J Photochem Photobiol B Biol 42:109–124

    Article  CAS  Google Scholar 

  75. Held HA, Benner SA (2002) Challenging artificial genetic systems: thymidine analogs with 5-position sulfur functionality. Nucleic Acids Res 30:3857–3869

    Article  CAS  Google Scholar 

  76. Salon J, Sheng J, Jiang J, Chen G, Caton-Williams J, Huang Z (2007) Oxygen replacement with selenium at the thymidine 4-position for the Se base pairing and crystal structure studies. J Am Chem Soc 129:4862–4863

    Article  CAS  Google Scholar 

  77. Logan G, Igunbor C, Chen G-X, Davis H, Simon A, Salon J, Huang Z (2006) A simple strategy for incorporation, protection, and deprotection of ­selenium functionality. Synlett 2006:1554–1558

    Article  Google Scholar 

  78. Sheng J, Huang Z (2008) Synthesis of a 4-selenothymidine phosphoramidite and incorporation into oligonucleotides. Curr Protoc Nucleic Acid Chem Chapter 1, Unit 1.19

    Google Scholar 

  79. Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–5646

    Article  CAS  Google Scholar 

  80. Wise DS, Townsend LB (1972) Synthesis of the selenopyrimidine nucleosides 2-seleno- and 4-selenouridine. J Heterocycl Chem 9:1461–1462

    Article  CAS  Google Scholar 

  81. Shiue C-Y, Chu S-H (1975) A facile synthesis of 1-beta-D-arabinofuranosyl-2-seleno- and -4-selenouracil and related compounds. J Org Chem 40:2971–2974

    Article  CAS  Google Scholar 

  82. Christofferson A, Zhao L, Sun H, Huang Z, Huang N (2011) Theoretical studies of the base pair fidelity of selenium-modified DNA. J Phys Chem B 115:10041–10048

    Article  CAS  Google Scholar 

  83. Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM (2006) MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 34:D145–149

    Article  CAS  Google Scholar 

  84. Ching WM, Alzner-DeWeerd B, Stadtman TC (1985) A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii. Proc Natl Acad Sci U S A 82:347–350

    Article  CAS  Google Scholar 

  85. Wittwer AJ, Tsai L, Ching WM, Stadtman TC (1984) Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry 23:4650–4655

    Article  CAS  Google Scholar 

  86. Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z (2008) Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res 36:7009–7018

    Article  CAS  Google Scholar 

  87. Zhang W, Sheng J, Hassan AE, Huang Z (2012) Synthesis of 2′-deoxy-5-(methylselenyl)cytidine and Se-DNAs for structural and functional studies. Chem Asian J 7:476–479

    Article  CAS  Google Scholar 

  88. Carrasco N, Caton-Williams J, Brandt G, Wang S, Huang Z (2005) Efficient enzymatic synthesis of phosphoroselenoate RNA by using adenosine 5′-(alpha-P-seleno)triphosphate. Angew Chem Int Ed Engl 45:94–97

    Google Scholar 

  89. Brandt G, Carrasco N, Huang Z (2006) Efficient substrate cleavage catalyzed by hammerhead ribozymes derivatized with selenium for X-ray crystallography. Biochemistry 45:8972–8977

    Google Scholar 

  90. Lin L, Caton-Williams J, Kaur M, Patino AM, Sheng J, Punetha J, Huang Z (2011) Facile synthesis of nucleoside 5′-(alpha-P-seleno)-triphosphates and phosphoroselenoate RNA transcription. RNA 17(10):1932–1938

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Georgia Cancer Coalition (GCC) Distinguished Cancer Clinicians and Scientists and NIH (NIGMS-R01GM095881).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, S., Sun, H., Huang, Z. (2013). Selenium Atom-Specific Mutagenesis (SAM) for Crystallography, DNA Nanostructure Design, and Other Applications. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_3

Download citation

Publish with us

Policies and ethics