Skip to main content

Moderate Deviations for the Determinant of Wigner Matrices

  • Conference paper
  • First Online:
Limit Theorems in Probability, Statistics and Number Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 42))

Abstract

We establish a moderate deviations principle (MDP) for the log-determinant log | det(M n ) | of a Wigner matrix M n matching four moments with either the GUE or GOE ensemble. Further we establish Cramér-type moderate deviations and Berry-Esseen bounds for the log-determinant for the GUE and GOE ensembles as well as for non-symmetric and non-Hermitian Gaussian random matrices (Ginibre ensembles), respectively.

2010 Mathematics Subject Classification. Primary 60B20; Secondary 60F10, 15A18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118 (Cambridge University press, Cambridge, 2010)

    Google Scholar 

  2. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd edn. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics (Wiley, New York, 1984) MR 771294 (86b:62079)

    Google Scholar 

  3. G.E. Andrews, I.P. Goulden, D.M. Jackson, Determinants of random matrices and Jack polynomials of rectangular shape. Stud. Appl. Math. 110(4), 377–390 (2003). MR 1971134 (2005g:15014)

    Google Scholar 

  4. A. Dembo, On random determinants. Q. Appl. Math. 47(2), 185–195 (1989). MR 998095 (91a:62125)

    Google Scholar 

  5. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  6. H. Döring, P. Eichelsbacher, Moderate deviations via cumulants. J. Theor. Probab. 1–26 (2012). doi: 10.1007/s10959-012-0437-0

    Google Scholar 

  7. H. Döring, P. Eichelsbacher, Moderate deviations for the eigenvalue counting function of Wigner matrices. Lat. Am. J. Probab. Math. Stat. Vol. X, pp. 27–44 (2013)

    Google Scholar 

  8. H. Döring, P. Eichelsbacher, in Edge Fluctuations of Eigenvalues for Wigner Matrices. High Dimensional Probability VI: The Banff volume. Progress in Probability (Springer, Berlin, 2013)

    Google Scholar 

  9. V.L. Girko, A central limit theorem for random determinants. Teor. Veroyatnost. i Primenen. 24(4), 728–740 (1979). MR 550529 (82g:60035)

    Google Scholar 

  10. V.L. Girko, A refinement of the central limit theorem for random determinants. Teor. Veroyatnost. i Primenen. 42(1), 63–73 (1997). MR 1453330 (98k:60034)

    Google Scholar 

  11. N.R. Goodman, The distribution of the determinant of a complex Wishart distributed matrix. Ann. Math. Statist. 34, 178–180 (1963). MR 0145619 (26 #3148b)

    Google Scholar 

  12. F. Götze, M. Gordin, Limit correlation functions for fixed trace random matrix ensembles. Comm. Math. Phys. 281(1), 203–229 (2008). MR 2403608 (2009d:82069)

    Google Scholar 

  13. F. Götze, M.I. Gordin, A. Levina, The limit behavior at zero of correlation functions of random matrices with a fixed trace. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 341, no. Veroyatn. i Stat. 11, 68–80, 230 (2007). MR 2363585 (2009g:62077)

    Google Scholar 

  14. N.N. Lebedev, Special Functions and Their Applications, Revised English edition. Translated and edited by Richard A. Silverman (Prentice-Hall, Englewood Cliffs, 1965). MR 0174795 (30 #4988)

    Google Scholar 

  15. G. Le Caër, R. Delannay, Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble. Phys. Rev. E (3) 62(2), part A, 1526–1536 (2000). MR 1797664 (2001m:82039)

    Google Scholar 

  16. G. Le Caër, R. Delannay, The distributions of the determinant of fixed-trace ensembles of real-symmetric and of Hermitian random matrices. J. Phys. A 36(38), 9885–9898 (2003). MR 2006448 (2004h:15008)

    Google Scholar 

  17. M.L. Mehta, Random Matrices, 3rd edn. Pure and Applied Mathematics (Amsterdam), vol. 142 (Elsevier/Academic, Amsterdam, 2004)

    Google Scholar 

  18. M.L. Mehta, J.-M. Normand, Probability density of the determinant of a random Hermitian matrix. J. Phys. A 31(23), 5377–5391 (1998). MR 1634820 (2000b:82018)

    Google Scholar 

  19. H.H. Nguyen, V. Vu, Random matrices: law of the determinant. Ann. Probab. (2013) (to appear)

    Google Scholar 

  20. A. Prékopa, On random determinants. I. Studia Sci. Math. Hungar. 2, 125–132 (1967). MR 0211439 (35 #2319)

    Google Scholar 

  21. R. Rudzkis, L. Saulis, V. Statuljavičus, A general lemma on probabilities of large deviations. Litovsk. Mat. Sb. 18(2), 99–116, 217 (1978). MR 0501287 (58 #18681)

    Google Scholar 

  22. L. Saulis, V. A. Statulevičius, Limit Theorems for Large Deviations. Mathematics and Its Applications (Soviet Series), vol. 73 (Kluwer, Dordrecht, 1991). Translated and revised from the 1989 Russian original. MR 1171883 (93e:60055b)

    Google Scholar 

  23. G. Szekeres, P. Turán, On an extremal problem in the theory of determinants. Math. Naturwiss. Am. Ungar. Akad. Wiss. 56, 796–806 (1937)

    Google Scholar 

  24. T. Tao, V. Vu, On random ± 1 matrices: singularity and determinant. Random Struct. Algorithms 28(1), 1–23 (2006). MR 2187480 (2006g:15048)

    Google Scholar 

  25. T. Tao, V. Vu, Random matrices: universality of local eigenvalue statistics. Acta Math. 206, 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Tao, V. Vu, A central limit theorem for the determinant of a Wigner matrix. Adv. Math. 231(1), 74 – 101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. H.F. Trotter, Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegö. Adv. Math. 54(1), 67–82 (1984). MR 761763 (86c:60055)

    Google Scholar 

Download references

Acknowledgements

The second author has been supported by Deutsche Forschungsgemeinschaft via SFB/TR 12.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanna Döring or Peter Eichelsbacher .

Editor information

Editors and Affiliations

Additional information

Dedicated to Friedrich Götze on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Döring, H., Eichelsbacher, P. (2013). Moderate Deviations for the Determinant of Wigner Matrices. In: Eichelsbacher, P., Elsner, G., Kösters, H., Löwe, M., Merkl, F., Rolles, S. (eds) Limit Theorems in Probability, Statistics and Number Theory. Springer Proceedings in Mathematics & Statistics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36068-8_12

Download citation

Publish with us

Policies and ethics