Skip to main content

On Graphs That Are Not PCGs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7748))

Included in the following conference series:

Abstract

Let T be an edge weighted tree and let d min ,d max be two nonnegative real numbers. Then the pairwise compatibility graph (PCG) of T is a graph G such that each vertex of G corresponds to a distinct leaf of T and two vertices are adjacent in G if and only if the weighted distance between their corresponding leaves in T is in the interval [d min ,d max ]. Similarly, a given graph G is a PCG if there exist suitable T,d min ,d max , such that G is a PCG of T. Yanhaona, Bayzid and Rahman proved that there exists a graph with 15 vertices that is not a PCG. On the other hand, Calamoneri, Frascaria and Sinaimeri proved that every graph with at most seven vertices is a PCG. In this paper we construct a graph of eight vertices that is not a PCG, which strengthens the result of Yanhaona, Bayzid and Rahman, and implies optimality of the result of Calamoneri, Frascaria and Sinaimeri. We then construct a planar graph with sixteen vertices that is not a PCG. Finally, we prove a variant of the PCG recognition problem to be NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandstädt, A., Hundt, C., Mancini, F., Wagner, P.: Rooted directed path graphs are leaf powers. Discrete Mathematics 310(4), 897–910 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstädt, A., Le, V.B., Rautenbach, D.: Exact leaf powers. Theoretical Computer Science 411(31-33), 2968–2977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Wagner, P.: Characterising (k, l)-leaf powers. Discrete Applied Mathematics 158(2), 110–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calamoneri, T., Frascaria, D., Sinaimeri, B.: All graphs with at most seven vertices are pairwise compatibility graphs. The Computer Journal (to appear, 2012), http://arxiv.org/abs/1202.4631

  5. Calamoneri, T., Petreschi, R., Sinaimeri, B.: On Relaxing the Constraints in Pairwise Compatibility Graphs. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 124–135. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Fellows, M.R., Meister, D., Rosamond, F.A., Sritharan, R., Telle, J.A.: Leaf Powers and Their Properties: Using the Trees. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 402–413. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Kearney, P.E., Munro, J.I., Phillips, D.: Efficient Generation of Uniform Samples from Phylogenetic Trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 177–189. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Kennedy, W.S., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. Journal of Discrete Algorithms 4(4), 511–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. Journal of Algorithms 42(1), 69–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Salma, S.A., Rahman, M.S.: Triangle-Free Outerplanar 3-Graphs Are Pairwise Compatibility Graphs. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 112–123. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  12. Yanhaona, M.N., Bayzid, M.S., Rahman, M.S.: Discovering pairwise compatibility graphs. Discrete Mathematics, Algorithms and Applications 2(4), 607–623 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yanhaona, M.N., Hossain, K.S.M.T., Rahman, M.S.: Pairwise compatibility graphs. Journal of Applied Mathematics and Computing 30(1-2), 479–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durocher, S., Mondal, D., Rahman, M.S. (2013). On Graphs That Are Not PCGs. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36065-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36064-0

  • Online ISBN: 978-3-642-36065-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics