Skip to main content

Integrating Salt Kinematics and Diagenesis in a Tight Gas Field: A Case Study from the Upper Rotliegend in East Frisia

  • Chapter
  • First Online:
Sedimentary Facies Reconstruction and Kinematic Restoration of Tight Gas Fields

Part of the book series: Springer Theses ((Springer Theses))

  • 813 Accesses

Abstract

In this chapter, a sequential retro-deformation of the tectonic history of an Upper Rotliegend II tight gas field in NW Germany (Fig. 6.1), and its linkage to sequential phases of diagenetic processes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lohr T, Krawczyk M, Tanner DC, Samiee R, Endres H, Oncken O, Kukla PA (2007) Strain partitioning due to salt; insights from interpretation of a 3D seismic data seit in the NW German Basin. Basin Res 19(4):579–597

    Article  Google Scholar 

  2. Stollhofen H, Bachmann NGH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper Rotliegend to early Cretaceous Basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental Basins; the Central European Basin system. Springer, Berlin, pp 181–210

    Google Scholar 

  3. Roberts AM, Kusznir NJ, Yielding G, Styles P (1998) 2D flexural backstripping of extensional basins; the need for a sideways glance. Pet Geosci 4:327–338

    Article  Google Scholar 

  4. Dahlstrom CDA (1969) Balanced cross sections. Can J Earth Sci=Revue Canadienne des Sciences de la Terre 6(4, Part 1):743–757

    Article  Google Scholar 

  5. Gibbs AD (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. J Struct Geol 5(2):153–160 (Balanced cross-sections and their geological significance; a memorial to David Elliott)

    Article  Google Scholar 

  6. Hossack JR, McGuinness DP (1990) Balanced sections and the development of fault and salt structures in the Gulf of Mexico (GOM). In: Proceedings of Geological Society of America 1990 annual meeting. Abstracts with programs—Geological Society of America, vol 22(7). p. 48

    Google Scholar 

  7. Rowan MG (1993) A systematic technique for the sequential restoration of salt structures. Tectonophysics 228(3–4):331–348 (New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics, Cobbold)

    Article  Google Scholar 

  8. Bishop DJ, Buchanan PG, Bishop CJ (1995) Gravity-driven thin-skinned extension above Zechstein group evaporites in the western central North Sea; an application of computer-aided section restoration techniques. Mar Pet Geol 12(2):115–135

    Article  Google Scholar 

  9. Buchanan PG, Bishop DJ, Hood DN (1996) Development of salt-related structures in the central North Sea; results from section balancing. In: Alsop GI, Blundell DJ, Davison I (eds) Salt tectonics, vol 100. Geological Society Special Publications, London, pp 111–128

    Google Scholar 

  10. Vendeville BC, Jackson MPA (1992) The rise of diapirs during thin-skinned extension. In: Jackson MPA (ed) Special issue; salt tectonics, vol 9(4). Marine and Petroleum Geology, Angola, pp 331–353

    Google Scholar 

  11. Schultz-Ela DD, Jackson MPA, Vendeville BC (1993) Mechanics of active salt diapirism. Tectonophysics 228(3–4):275–312 (New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics)

    Article  Google Scholar 

  12. Koyi H, Talbot CJ, Torudbakken BO (1993) Salt diapirs of the Southwest Nordkapp Basin; analogue modelling. Tectonophysics 228(3–4):167–187 (New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics)

    Article  Google Scholar 

  13. Nalpas T, Brun JP (1993) Salt flow and diapirism related to extension at crustal scale. Tectonophysics 228(3–4):349–362 (New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics)

    Article  Google Scholar 

  14. Vendeville BC, Ge H, Jackson MPA (1995) Scale models of salt tectonics during basement-involved extension. Pet Geosci 1:179–183

    Article  Google Scholar 

  15. van Keken PE, Spiers CJ, van den Berg AP, Muyzert EJ (1993) The effective viscosity of rocksalt; implementation of steady-state creep laws in numerical models of salt diapirism. Tectonophysics 225(4):457–476

    Article  Google Scholar 

  16. Poliakov ANB, Podladchikov Y, Talbot C (1993) Initiation of salt diapirs with frictional overburdens; numerical experiments. Tectonophysics 228(3–4):199–210 (New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics)

    Google Scholar 

  17. Podladchikov Y, Talbot C, Poliakov ANB (1993) Numerical models of complex diapirs. Tectonophysics 228(3–4):189–198 (New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics)

    Article  Google Scholar 

  18. Havenith VMJ (in prep.) Diagenese evolution von Oberrotliegend Sandsteinen in Ostfriesland. Dissertation

    Google Scholar 

  19. Lee M (1996) Diagenesis of the Rotliegend sandstone of southern Ostfriesland. Structural and stratigraphic processes MEPTEC. Confidential report, Dallas, Texas, USA, p. 30

    Google Scholar 

  20. Havenith VMJ, Meyer FM, Sindern S (2010) Diagenetic evolution of a tight gas field in NW Germany. In: Proceedings of DGMK/ÖGEW-Frühjahrstagung 2010, Fachbereich Aufsuchung und Gewinnung, Celle

    Google Scholar 

  21. Glennie KW (1990) Introduction to the petroleum geology of the North sea 3rd ed. Blackwell Scientific, Oxford

    Google Scholar 

  22. Stollhofen H, Bachman GH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper rotliegend to early cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (Eds) Dynamics of complex intracontinental basins. The central european basin system, pp 181–210

    Google Scholar 

  23. Scotese C. (2008) Palaeomap project

    Google Scholar 

  24. George GT, Berry JK (1993) A new palaeogeographic and depositional model for the upper rotliegend of the UK sector of the Southern North Sea. In: North CP, Prosser DJ (eds) Characterization of fluvial and aeolian reservoirs, Special Publication, Geological Society of London, vol 73, pp 291–319

    Google Scholar 

  25. Strömbäck AC, Howell JA (2002) Predicting distribution of remobilized aeolian facies using sub-surface data: the Weissliegend of the UK Southern North Sea. Petroleum Geoscience 8:237–249

    Google Scholar 

  26. Peryt TM, Wagner R (1998) Zechstein evaporite deposition in the Central European Basin: cycles and stratigraphic sequences. J Seismic Explor 7(3-4):201–218

    Google Scholar 

  27. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Heidelberg, Springer p 1036

    Google Scholar 

  28. Frisch U, Kockel F (1997) Altkimmerische bewegungen in nordwestdeutschland. Brandenburger Geowiss Beitr 4(1):19–29

    Google Scholar 

  29. Brückner-Röhling S, Röhling HG (1998) Palaeotectonics in the Lower and Middle Triassic (Buntsandstein, Muschelkalk) of the North German Basin. Hallesches Jb Geowiss B, Beih vol 5, pp 27–28

    Google Scholar 

  30. Schröder B (1982) Entwicklung des sedimentbeckens und stratigraphie der klassischen germanischen trias. Geologische Rundschau 71(3):783–794

    Google Scholar 

  31. Jublitz KB, Znosko J, Franke D (1985) Lithologic-palaeogeographic map. middle bunter, 1:1.500.000. International geologic correlation programme project no. 86, Southwest border of the East-European Platform, Zentrales Geologisches Institut, Berlin, G.D.R

    Google Scholar 

  32. Szulc J (2000) Middle triassic evolution of the northern peri-tethys area as influenced by early opening of the tethys ocean. Annales Societatis Geologorum Poloniae 70:1–48

    Google Scholar 

  33. Schwarz HU (1975) Sedimentary structures and facies analysis of shallow marine carbonates (lower muschelkalk, middle triassic, southwestern Germany). Contributions to Sedimentology, Stuttgart 3:1–100

    Google Scholar 

  34. Paul J, Franke W (1977) Sedimentologie einer transgression: die Röt/Muschelkalk-Grenze bei Göttingen. N Jb Geol Paläont Mh 3:148–177

    Google Scholar 

  35. Senkowiczowa H (1976) The Trias – The Polish lowlands. In: Geology of Poland 1: Stratigraphy, Part 2. Publishing House Wydawnictwa Geologiczne, Warsaw, pp 79–94

    Google Scholar 

  36. Brandner R (1984) Meeresspiegelschwankungen und tektonik in der trias der NW tethys. Jahrbuch für Geologie. A-B (Wien) 126:435−475

    Google Scholar 

  37. Maystrenko YP, Bayer U, Scheck-Wenderoth M (2005) The glueckstadt graben, a sedimentary record between the north and baltic sea in north central europe. Tectonophysics 397:113–126

    Google Scholar 

  38. Wurster P (1968) Paläogeographie der deutschen trias und die paläogeographische orientierung der lettenkohle in südwestdeutschland. Eclog geol Helv 61:157–166

    Google Scholar 

  39. Paul J, Wemmer K, Ahrendt H (2008) Provenance of siliciclastic sediments (Permian to Jurassic) in the central european basin. Zeitschrift der Deutschen Gesellschaft fuer Geowissenschaften 159(4):641–650

    Google Scholar 

  40. Ziegler PA (1988) Evolution of the arctic-north atlantic and the western thetys. aapg memoirs 43:198 p and 30 plates

    Google Scholar 

  41. Antrett P, Vackiner AA, Wollenberg U, Desbois G, Kukla P, Urai JL, Stollhofen H, Hilgers C (2011) Nano-scale porosity analysis of a Permian tight gas reservoir. In: Proceedings of extended abstract, AAPG international conference and exhibition. Milan, Italy

    Google Scholar 

  42. Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid Cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  43. Schmoker JW, Halley RB (1982) Carbonate porosity versus depth; a predictable relation for South Florida. AAPG Bull 66:2561–2570

    Google Scholar 

  44. Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge 458 p

    Google Scholar 

  45. Glennie KW (1986) Development of NW Europe‘s southern Permian gas basin. In: Brooks J, Goff JC, van Horn B (eds) Habitat of Paleozoic gas in N.W. Europe, vol 23. Geological Society of London, London, pp 3–22

    Google Scholar 

  46. Legler B. (2005) Faziesentwicklung im Südlichen Permbecken in Abhängigkeit von Tektonik, eustatischen Meeresspiegelschwankungen des Proto-Atlantiks und Klimavariabilität (Oberrotliegend, Nordwesteuropa): Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, vol 47. p. 103

    Google Scholar 

  47. Vackiner AA, Antrett P, Stollhofen H, Back S, Kukla PA, Bärle C (2011) Syndepositional tectonic controls and palaeo-topography of a Permian tight gas reservoir in NW Germany. J Pet Geol 34(4):411–428

    Article  Google Scholar 

  48. Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell Int Pet Mij Geol Soc London 2:239

    Google Scholar 

  49. Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System - new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  50. Parnell J (2004) Titanium mobilization by hydrocarbon fluids related to sill intrusion in a sedimentary sequence, Scotland. Ore Geol Rev 24(1–2):155–167 (Ores and organic matter)

    Article  Google Scholar 

  51. Jackson MPA, Vendeville BC, Schultz-Ela DD (1994) Structural dynamics of salt systems. Annu Rev Earth Planet Sci 22:93–117

    Article  Google Scholar 

  52. Geluk M (1999) Late Permian (Zechstein) rifting in the Netherlands; models and implications for petroleum geology. Pet Geosci 5:189–199

    Article  Google Scholar 

  53. Geluk MC (2000) Late Permian (Zechstein) carbonate-facies maps, the Netherlands. Geologie en Mijnbouw, Neth J Geosci 79(1):17–27

    Google Scholar 

  54. Schöner R, Gaupp R (2005) Contrasting red bed diagenesis; the southern and northern margin of the Central European Basin. Int J Earth Sci 94(5–6):897–916 (Dynamics of sedimentary basins; the example of the Central European Basin system)

    Article  Google Scholar 

  55. Walsh P, Schultz-Ela DD (2003) Mechanics of graben evolution in Canyonlands National Park. Utah GSA Bull 115(3):259–270

    Article  Google Scholar 

  56. Mohr M, Kukla PA, Urai JL, Bresser G (2005) Multiphase salt tectonic evolution in NW Germany; seismic interpretation and retro-deformation. Int J Earth Sci 94(5–6):917–940

    Article  Google Scholar 

  57. Kukla PA, Urai JL, Mohr M (2008) Dynamics of salt structures. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins; the Central European Basin system. Springer, Berlin, pp 291–306

    Google Scholar 

  58. Mohr M, Warren JK, Kukla PA, Urai JL, Irmen A (2007) Subsurface seismic record of salt glaciers in an extensional intracontinental setting (late Triassic of northwestern Germany). Geology 35:963–966

    Article  Google Scholar 

  59. Duval BC, Cramez C, Jackson MPA (1992) Raft tectonics in the Kwanza Basin, Angola. In: Jackson MPA (ed) Special issue salt tectonics, vol 9(4). Angola, Marine and Petroleum Geolog, pp 389–404

    Google Scholar 

  60. Ziegler PA (1995) Geodynamics of compressional intra-plate deformations: a comparison with the Alpine Foreland. Nova Acta Leopold, NF 71(291):265–300

    Google Scholar 

  61. Ziegler PA (1982) Geological Atlas of Western and Central Europe. Elsevier Science Ltd, Amsterdam, p 130

    Google Scholar 

  62. Lokhorst A (1998) The Northwest European Gasatlas. Netherlands Institute of Applied Geoscience TNO, Haarlem

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Alexandra Vackiner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vackiner, A.A. (2013). Integrating Salt Kinematics and Diagenesis in a Tight Gas Field: A Case Study from the Upper Rotliegend in East Frisia. In: Sedimentary Facies Reconstruction and Kinematic Restoration of Tight Gas Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36047-3_6

Download citation

Publish with us

Policies and ethics