Skip to main content

Quantum Secret Sharing with Graph States

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7721))

Abstract

We study the graph-state-based quantum secret sharing protocols [24,17] which are not only very promising in terms of physical implementation, but also resource efficient since every player’s share is composed of a single qubit. The threshold of a graph-state-based protocol admits a lower bound: for any graph of order n, the threshold of the corresponding n-player protocol is at least 0.506n. Regarding the upper bound, lexicographic product of the C 5 graph (cycle of size 5) are known to provide n-player protocols which threshold is n − n 0.68. Using Paley graphs we improve this bound to n − n 0.71. Moreover, using probabilistic methods, we prove the existence of graphs which associated threshold is at most 0.811n.Albeit non-constructive, probabilistic methods permit to prove that a random graph G of order n has a threshold at most 0.811n with high probability. However, verifying that the threshold of a given graph is acually smaller than 0.811n is hard since we prove that the corresponding decision problem is NP-Complete.These results are mainly based on the graphical characterization of the graph-state-based secret sharing properties, in particular we point out strong connections with domination with parity constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anshu, A., Mhalla, M.: Pseudo-telepathy games and genuine NS n-way nonlocality using graph states arxiv:1207.2276

    Google Scholar 

  2. Bazzi, L.M.J., Mitter, S.K.: Some randomized code constructions from group actions. IEEE Transactions on Information Theory 52(7), 3210–3219 (2006)

    Article  MathSciNet  Google Scholar 

  3. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  4. Broadbent, A., Chouha, P.R., Tapp, A.: The GHZ state in secret sharing and entanglement simulation. arXiv:0810.0259 (2008)

    Google Scholar 

  5. Browne, D.E., Kashe, E., Mhalla, M., Perdrix, S.: Generalized ow and determinism in measurement-based quantum computation. New Journal of Physics (NJP) 9(8) (2007)

    Google Scholar 

  6. Beigi, S., Chuang, I., Grassl, M., Shor, P., Zeng, B.: Graph concatenation for quantum codes. Journal of Mathematical Physics 52(2), 022201 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cattanéo, D., Perdrix, S.: Parametrized Complexity of Weak Odd Domination Problems. arXiv:1206.4081 (2012)

    Google Scholar 

  8. Cleve, R., Gottesman, D., Lo, H.-K.: How to Share a Quantum Secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  Google Scholar 

  9. Danos, V., Kashe, E.: Determinism in the one-way model. Physical Review A 74(052310) (2006)

    Google Scholar 

  10. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  MathSciNet  Google Scholar 

  11. Feng, K., Ma, Z.: A finite Gilbert-Varshamov bound for pure stabilizer quantum codes. IEEE Transactions on Information Theory 50, 3323–3325 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Proceedings of the International School of Physics “Enrico Fermi” on “Quantum Computers, Algorithms and Chaos” (2005)

    Google Scholar 

  13. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Physical Review A 69, 062311, quant-ph/0307130 (2004)

    Article  MathSciNet  Google Scholar 

  14. Hillery, M., Buzek, V., Berthiaume, A.: Quantum Secret Sharing. Phys. Rev. A 59, 1829, arXiv/9806063 (1999)

    Article  MathSciNet  Google Scholar 

  15. Høyer, P., Mhalla, M., Perdrix, S.: Resources required for preparing graph states. In: 17th International Symposium on Algorithms and Computation (2006)

    Google Scholar 

  16. Javelle, J., Mhalla, M., Perdrix, S.: Classical versus Quantum Graph-based Secret Sharing. eprint:arXiv:1109.4731 (2011)

    Google Scholar 

  17. Javelle, J., Mhalla, M., Perdrix, S.: New protocols and lower bound for quantum secret sharing with graph states. In: Theory of Quantum Computation, Communication and Cryptography (TQC 2012). LNCS (to appear, 2012) eprint:arXiv:1109.1487

    Google Scholar 

  18. Javelle, J., Mhalla, M., Perdrix, S.: On the Minimum Degree Up to Local Complementation: Bounds and Complexity. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 138–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Kashefi, E., Markham, D., Mhalla, M., Perdrix, S.: Information flow in secret sharing protocols. EPTCS 9, 87–97 (2009)

    Article  Google Scholar 

  20. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 062315 (2010)

    Article  Google Scholar 

  21. Klavzar, S., Milutinovic, U., Petr, C.: 1-perfect codes in sierpinski graphs. Bulletin of the Australian Mathematical Society 66, 369–384 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kratochvil, J.: Perfect codes in general graphs. In: 7th Hungarian colloqium on combinatorics, Eger (1987)

    Google Scholar 

  23. Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Colloquia Mathematica Societatis Janos Bolyai, pp. 609–627 (1975)

    Google Scholar 

  24. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical Review A 78, 042309 (2008)

    Article  MathSciNet  Google Scholar 

  25. Mhalla, M., Murao, M., Perdrix, S., Someya, M., Turner, P.: Which graph states are useful for quantum information processing? In: Theory of Quantum Computation, Communication and Cryptography (TQC 2011). LNCS (2011) (to appear)

    Google Scholar 

  26. Mhalla, M., Perdrix, S.: Finding Optimal Flows Efficiently. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 857–868. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Mhalla, M., Perdrix, S.: Graph States, Pivot Minor, and Universality of (X,Z)-measurements. International Journal of Unconventional Computing (to be published, 2012)

    Google Scholar 

  28. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local Lemma. Journal of the ACM (JACM) 57(2), 1–15 (2010)

    Article  MathSciNet  Google Scholar 

  29. Prevedel, R., Walther, P., Tiefenbacher, F., Bohi, P., Kaltenbaek, R., Jennewein, T., Zeilinger, A.: High-speed linear optics quantum computing using active feed-forward. Nature 445(7123), 65–69 (2007)

    Article  Google Scholar 

  30. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review Letters 86(22), 5188–5191 (2001)

    Article  Google Scholar 

  31. Sarvepalli, P.: Non-Threshold Quantum Secret Sharing Schemes in the Graph State Formalism eprint:arXiv:1202.3433 (2012)

    Google Scholar 

  32. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  Google Scholar 

  33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 (2006)

    Article  Google Scholar 

  35. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434(7030), 169–176 (2005)

    Article  Google Scholar 

  36. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gravier, S., Javelle, J., Mhalla, M., Perdrix, S. (2013). Quantum Secret Sharing with Graph States. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds) Mathematical and Engineering Methods in Computer Science. MEMICS 2012. Lecture Notes in Computer Science, vol 7721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36046-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36046-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36044-2

  • Online ISBN: 978-3-642-36046-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics