Skip to main content

Variable Selection

  • Chapter
Multivariate Statistics

Abstract

We have already remarked that multicollinearity, i.e., nearly linearly dependent columns in the design matrix, may increase the variance of the estimators \(\hat{\beta }_{i}\). For simplicity of presentation, we will assume throughout this section that the response is centered and predictor variables are standardized. More formally, Zvára (2008, Theorem 11.1) observes in the linear model (8.1) that

$$\displaystyle{\mathop{\mathrm{\mathsf{E}}}\nolimits \|\hat{\beta }\|^{2} =\|\beta \| ^{2} +\sigma ^{2}\mathop{ \mathrm{\text{tr}}}\nolimits (\mathcal{X}^{\top }\mathcal{X})^{-1}}$$

and

$$\displaystyle{\mathop{\mathrm{\mathsf{E}}}\nolimits \|\hat{Y }\|^{2} =\| \mathcal{X}\beta \|^{2} +\sigma ^{2}\mathop{ \mathrm{\text{rank}}}\nolimits (\mathcal{X}).}$$

It follows that multicollinearity does not affect the fitted values \(\hat{Y } = \mathcal{X}\hat{\beta }\) because the expectation of its squared length depends only on σ 2 and the rank of the model matrix \(\mathcal{X}\). On the other hand, the expectation of the squared length of the estimator \(\hat{\beta }\) depends on the term \(\mathop{\mathrm{\text{tr}}}\nolimits (\mathcal{X}^{\top }\mathcal{X})^{-1} =\sum \lambda _{ i}^{-1}\), where λ i are the eigenvalues of \(\mathcal{X}^{\top }\mathcal{X}\). If the columns of \(\mathcal{X}\) are nearly dependent, some of these eigenvalues may be very small and \(\mathop{\mathrm{\mathsf{E}}}\nolimits \|\hat{\beta }\|^{2}\) then may become very large even if, technically, the design matrix still has full rank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data, Springer Series in Statistics. Heidelberg: Springer.

    Google Scholar 

  • Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression: models, methods and applications. New York: Springer.

    Book  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

    Google Scholar 

  • Härdle, W., & Simar, L. (2015). Applied multivariate statistical analysis (4th ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction, Springer Series in Statistics (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Knight, K., & Fu, W. (2000). Asymptotics for Lasso-type estimators. The Annals of Statistics, 28(5), 1356–1378.

    Article  MATH  MathSciNet  Google Scholar 

  • Lockhart, R., Taylor, J., Tibshirani, R. J., & Tibshirani, R. (2013). A significance test for the lasso. arXiv preprint arXiv:1301.7161.

    Google Scholar 

  • Osborne, M. R., Presnell, B., & Turlach, B. A. (2000). On the LASSO and its dual. Journal of Computational and Graphical Statistics, 9(2), 319–337.

    MathSciNet  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267–288.

    MATH  MathSciNet  Google Scholar 

  • Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society, Series B, 73(3), 273–282.

    Article  MathSciNet  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Wang, Y. (2012). Model selection, in J. E. Gentle, W. K. Härdle, & Y. Mori (Eds.), Handbook of computational statistics (2nd ed., pp. 469–498). Berlin: Springer.

    Chapter  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67(2), 301–320.

    Article  MATH  MathSciNet  Google Scholar 

  • Zvára. (2008). Regression (in Czech), Prague: Matfyzpress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Härdle, W.K., Hlávka, Z. (2015). Variable Selection. In: Multivariate Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36005-3_9

Download citation

Publish with us

Policies and ethics