Skip to main content

Invertebrate and Vertebrate Collagens

  • Chapter
  • First Online:
Evolution of Extracellular Matrix

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

Collagens form a family of extracellular matrix proteins that is often associated with metazoan multicellularity and evolution. These modular proteins elaborate supramolecular networks that contribute to the physical and biological properties of tissues. Among the different collagen families characterized in vertebrates, three of them represent ubiquitous components of extracellular matrices (fibrillar collagens), and basement membranes (type IV collagens and multiplexins). Interestingly, these three collagen families are already present in basal animals, sponges, and cnidarians. Other metazoan collagen families have a phylum-specific origin or have emerged during chordate evolution. Collagen-like proteins that are not involved in animal extracellular matrix structure have been discovered in vertebrates and bacterial pathogens. Among these, vertebrate defense collagens of the innate immune system provide protection against pathogens while bacterial collagens seem to be involved in pathogen virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackley BD, Crew JR, Elamaa H, Pihlajaniemi T, Kuo CJ, Kramer JM (2001) The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J Cell Biol 152:1219–1232. doi:10.1083/jcb.152.6.1219

    PubMed  CAS  Google Scholar 

  • Acton S, Resnick D, Freeman M, Ekkel Y, Ashkenas J, Krieger M (1993) The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J Biol Chem 268:3530–3537

    PubMed  CAS  Google Scholar 

  • Aho S, Turakainen H, Onnela ML, Boedtker H (1993) Characterization of an intronless collagen gene family in the marine sponge Microciona prolifera. Proc Natl Acad Sci U S A 90:7288–7292. doi:10.1073/pnas.90.15.7288

    PubMed  CAS  Google Scholar 

  • Aouacheria A, Cluzel C, Lethias C, Gouy M, Garrone R, Exposito JY (2004) Invertebrate data predict an early emergence of vertebrate fibrillar collagen clades and an anti-incest model. J Biol Chem 279:47711–47719. doi:10.1074/jbc.M408950200

    PubMed  CAS  Google Scholar 

  • Aouacheria A, Geourjon C, Aghajari N, Navratil V, Deléage G, Lethias C, Exposito JY (2006) Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. Mol Biol Evol 23:2288–2302. doi:10.1093/molbev/msl100

    PubMed  CAS  Google Scholar 

  • Bailey WJ, Kim J, Wagner GP, Ruddle FH (1997) Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol 14:843–853

    PubMed  CAS  Google Scholar 

  • Barber RE, Kwan AP (1996) Partial characterization of the C-terminal non-collagenous domain (NC1) of collagen type X. Biochem J 320:479–485

    PubMed  CAS  Google Scholar 

  • Benveniste-Schrode K, Doering JL, Hauck WW, Schrode J, Kendra KL, Drexler BK (1985) Evolution of chick type I procollagen genes. J Mol Evol 22:209–219. doi:10.1007/BF02099750

    PubMed  CAS  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95:649–657

    PubMed  CAS  Google Scholar 

  • Boot-Handford RP, Tuckwell DS (2003) Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest. Bioessays 25:142–151. doi:10.1002/bies.10230

    PubMed  CAS  Google Scholar 

  • Boot-Handford RP, Tuckwell DS, Plumb DA, Rock CF, Poulsom R (2003) A novel and highly conserved collagen (pro(α)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J Biol Chem 278:31067–31077. doi:10.1074/jbc.M212889200

    PubMed  CAS  Google Scholar 

  • Borza DB, Bondar O, Ninomiya Y, Sado Y, Naito I, Todd P, Hudson BG (2001) The NC1 domain of collagen IV encodes a novel network composed of the α1, α2, α5, and α6 chains in smooth muscle basement membranes. J Biol Chem 276:28532–28540. doi:10.1074/jbc.M103690200

    PubMed  CAS  Google Scholar 

  • Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bächinger HP (2009) Crystal structure of human collagen XVIII trimerization domain: A novel collagen trimerization Fold. J Mol Biol 392:787–802. doi:10.1016/j.jmb.2009.07.057

    PubMed  CAS  Google Scholar 

  • Boutaud A, Borza DB, Bondar O, Gunwar S, Netzer KO, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG (2000) Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J Biol Chem 275:30716–30724. doi:10.1074/jbc.M004569200

    PubMed  CAS  Google Scholar 

  • Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44. doi:10.1016/S0248-4900(97)86829-3

    PubMed  CAS  Google Scholar 

  • Bozue J, Moody KL, Cote CK, Stiles BG, Friedlander AM, Welkos SL, Hale ML (2007) Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect Immun 75:4498–4505. doi:10.1128/IAI.00434-07

    PubMed  CAS  Google Scholar 

  • Cameron RA, Rowen L, Nesbitt R, Bloom S, Rast JP, Berney K, Arenas-Mena C, Martinez P, Lucas S, Richardson PM, Davidson EH, Peterson KJ, Hood L (2006) Unusual gene order and organization of the sea urchin hox cluster. J Exp Zool B Mol Dev Evol 306:45–58. doi:10.1002/jez.b.21070

    PubMed  Google Scholar 

  • Carland TM, Gerwick L (2010) The C1q domain containing proteins: Where do they come from and what do they do? Dev Comp Immunol 34:785–790. doi:10.1016/j.dci.2010.02.014

    PubMed  CAS  Google Scholar 

  • Caswell CC, Barczyk M, Keene DR, Lukomska E, Gullberg DE, Lukomski S (2008) Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors, integrins α2ß1 and α11ß1. J Biol Chem 283:36168–36175. doi:10.1074/jbc.M806865200

    PubMed  CAS  Google Scholar 

  • Caswell CC, Oliver-Kozup H, Han R, Lukomska E, Lukomski S (2010) Scl1, the multifunctional adhesin of group A Streptococcus, selectively binds cellular fibronectin and laminin, and mediates pathogen internalization by human cells. FEMS Microbiol Lett 303:61–68. doi:10.1111/j.1574-6968.2009.01864.x

    PubMed  CAS  Google Scholar 

  • Chen SM, Tsai YS, Wu CM, Liao SK, Wu LC, Chang CS, Liu YH, Tsai PJ (2010) Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell. BMC Microbiol 10:320. doi:10.1186/1471-2180-10-320

    PubMed  CAS  Google Scholar 

  • Cheng H, Rashid S, Yu Z, Yoshizumi A, Hwang E, Brodsky B (2011) Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation. J Biol Chem 286:2041–2046. doi:10.1074/jbc.M110.153965

    PubMed  CAS  Google Scholar 

  • Chu ML, de Wet W, Bernard M, Ding JF, Morabito M, Myers J, Williams C, Ramirez F (1984) Human proα1(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature 310:337–340. doi:10.1038/310337a0

    PubMed  CAS  Google Scholar 

  • Cluzel C, Lethias C, Garrone R, Exposito JY (2004) Distinct maturations of N-propeptide domains in fibrillar procollagen molecules involved in the formation of heterotypic fibrils in adult sea urchin collagenous tissues. J Biol Chem 279:9811–9817. doi:10.1074/jbc.M311803200

    PubMed  CAS  Google Scholar 

  • Cox GN, Kramer JM, Hirsh D (1984) Number and organization of collagen genes in Caenorhabditis elegans. Mol Cell Biol 4:2389–2395. doi:10.1128/MCB.4.11.2389

    PubMed  CAS  Google Scholar 

  • Coyne KJ, Qin XX, Waite JH (1997) Extensible collagen in mussel byssus: a natural block copolymer. Science 277:1830–1832. doi:10.1126/science.277.5333.1830

    PubMed  CAS  Google Scholar 

  • Davies KG, Curtis RH (2011) Cuticle surface coat of plant-parasitic nematodes. Annu Rev Phytopathol 49:135–156. doi:10.1146/annurev-phyto-121310-111406

    PubMed  CAS  Google Scholar 

  • de Castro LA, Rodrigues Pedroso T, Kuchiishi SS, Ramenzoni M, Kich JD, Zaha A, Henning Vainstein M, Bunselmeyer Ferreira H (2006) Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains. Vet Microbiol 116:258–269. doi:10.1016/j.vetmic.2006.04.022

    PubMed  Google Scholar 

  • Dion AS, Myers JC (1987) COOH-terminal propeptides of the major human procollagens. Structural, functional and genetic comparisons. J Mol Biol 193:127–143. doi:10.1016/0022-2836(87)90632-2

    PubMed  CAS  Google Scholar 

  • Ehrlich H, Deutzmann R, Brunner E, Cappellini E, Koon H, Solazzo C, Yang Y, Ashford D, Thomas-Oates J, Lubeck M, Baessmann C, Langrock T, Hoffmann R, Wörheide G, Reitner J, Simon P, Tsurkan M, Ereskovsky AV, Kurek D, Bazhenov VV, Hunoldt S, Mertig M, Vyalikh DV, Molodtsov SL, Kummer K, Worch H, Smetacek V, Collins MJ (2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat Chem 2:1084–1088. doi:10.1038/nchem.899

    PubMed  CAS  Google Scholar 

  • Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fássler R, Muona A, Ilves M, Ruskoaho H, Takala TE, Pihlajaniemi T (2001) Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A 98:1194–1199. doi:10.1073/pnas.031444798

    PubMed  CAS  Google Scholar 

  • Engel J (1997) Versatile collagens in invertebrates. Science 277:1785–1786. doi:10.1126/science.277.5333.1785

    PubMed  CAS  Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci U S A 87:6669–6673. doi:10.1073/pnas.87.17.6669

    PubMed  CAS  Google Scholar 

  • Exposito JY, Ouazana R, Garrone R (1990) Cloning and sequencing of a Porifera partial cDNA coding for a short-chain collagen. Eur J Biochem 190:401–406. doi:10.1111/j.1432-1033.1990.tb15589.x

    PubMed  CAS  Google Scholar 

  • Exposito JY, Le Guellec D, Lu Q, Garrone R (1991) Short chain collagens in sponges are encoded by a family of closely related genes. J Biol Chem 266:21923–21928

    PubMed  CAS  Google Scholar 

  • Exposito JY, D'Alessio M, Ramirez F (1992a) Novel amino-terminal propeptide configuration in a fibrillar procollagen undergoing alternative splicing. J Biol Chem 267:17404–17408

    PubMed  CAS  Google Scholar 

  • Exposito JY, D'Alessio M, Solursh M, Ramirez F (1992b) Sea urchin collagen evolutionarily homologous to vertebrate pro-α2(I) collagen. J Biol Chem 267:15559–15562

    PubMed  CAS  Google Scholar 

  • Exposito JY, van der Rest M, Garrone R (1993) The complete intron/exon structure of Ephydatia mülleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module. J Mol Evol 37:254–259

    PubMed  CAS  Google Scholar 

  • Exposito JY, Suzuki H, Geourjon C, Garrone R, Solursh M, Ramirez F (1994) Identification of a cell lineage-specific gene coding for a sea urchin α2(IV)-like collagen chain. J Biol Chem 269:13167–13171

    PubMed  CAS  Google Scholar 

  • Exposito JY, Cluzel C, Lethias C, Garrone R (2000) Tracing the evolution of vertebrate fibrillar collagens from an ancestral α chain. Matrix Biol 19:275–279. doi:10.1016/S0945-053X(00)00067-6

    PubMed  CAS  Google Scholar 

  • Exposito JY, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268:302–316. doi:10.1002/ar.10162

    PubMed  CAS  Google Scholar 

  • Exposito JY, Larroux C, Cluzel C, Valcourt U, Lethias C, Degnan BM (2008) Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J Biol Chem 283:28226–28235. doi:10.1074/jbc.M804573200

    PubMed  CAS  Google Scholar 

  • Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The fibrillar collagen family. Int J Mol Sci 11:407–426. doi:10.3390/ijms11020407

    PubMed  CAS  Google Scholar 

  • Eyre DR, Apon S, Wu JJ, Ericsson LH, Walsh KA (1987) Collagen type IX: evidence for covalent linkages to type II collagen in cartilage. FEBS Lett 220:337–341. doi:10.1016/0014-5793(87)80842-6

    PubMed  CAS  Google Scholar 

  • Fahey B, Degnan BM (2010) Origin of animal epithelia: insights from the sponge genome. Evol Dev 12:601–617. doi:10.1111/j.1525-142X.2010.00445.x

    PubMed  CAS  Google Scholar 

  • Fleury C, Serpentini A, Kypriotou M, Renard E, Galéra P, Lebel JM (2011) Characterization of a non-fibrillar-related collagen in the mollusc Haliotis tuberculata and its biological activity on human dermal fibroblasts. Mar Biotechnol 13:1003–1016. doi:10.1007/s10126-011-9364-9

    PubMed  CAS  Google Scholar 

  • Fowler SJ, Jose S, Zhang X, Deutzmann R, Sarras MP Jr, Boot-Handford RP (2000) Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose. J Biol Chem 275:39589–39599. doi:10.1074/jbc.M005871200

    PubMed  CAS  Google Scholar 

  • Franzke CW, Bruckner P, Bruckner-Tuderman L (2005) Collagenous transmembrane proteins: recent insights into biology and pathology. J Biol Chem 280:4005–4008. doi:10.1074/jbc.R400034200

    PubMed  CAS  Google Scholar 

  • Fukai N, Eklund L, Marneros AG, Oh SP, Keene DR, Tamarkin L, Niemelä M, Ilves M, Li E, Pihlajaniemi T, Olsen BR (2002) Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J 21:1535–1544. doi:10.1093/emboj/21.7.1535

    PubMed  CAS  Google Scholar 

  • Gaill F, Wiedemann H, Mann K, Kühn K, Timpl R, Engel J (1991) Molecular characterization of cuticle and interstitial collagens from worms collected at deep sea hydrothermal vents. J Mol Biol 221:209–223. doi:10.1016/0022-2836(91)80215-G

    PubMed  CAS  Google Scholar 

  • Gaill F, Mann K, Wiedemann H, Engel J, Timpl R (1995) Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. J Mol Biol 246:284–294. doi:10.1006/jmbi.1994.0084

    PubMed  CAS  Google Scholar 

  • Garrone R (1984) Formation and involvement of extracellular matrix in the development of sponges, a primitive multicellular system. In: Trelstad RL (ed) The role of extracellular matrix in development. Alan R. Liss, New York, pp 461–477

    Google Scholar 

  • Garrone R, Exposito JY, Franc JM, Franc S, Humbert-David N, Qin L, Tillet E (1993) Phylogenesis of the extracellular matrix. C R Seances Soc Biol Fil 187:114–123

    PubMed  CAS  Google Scholar 

  • Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257. doi:10.1007/s00441-009-0844-4

    PubMed  CAS  Google Scholar 

  • Graham PL, Johnson JJ, Wang S, Sibley MH, Gupta MC, Kramer JM (1997) Type IV collagen is detectable in most, but not all, basement membranes of Caenorhabditis elegans and assembles on tissues that do not express it. J Cell Biol 137:1171–1183. doi:10.1083/jcb.137.5.1171

    PubMed  CAS  Google Scholar 

  • Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, Neame PJ, Mechling DE, Bächinger HP, Morris NP (2000) Structural organization of distinct domains within the non-collagenous N-terminal region of collagen type XI. J Biol Chem 275:11498–11506. doi:10.1074/jbc.275.15.11498

    PubMed  CAS  Google Scholar 

  • Guo XD, Kramer JM (1989) The two Caenorhabditis elegans basement membrane (type IV) collagen genes are located on separate chromosomes. J Biol Chem 264:17574–17582

    PubMed  CAS  Google Scholar 

  • Guo XD, Johnson JJ, Kramer JM (1991) Embryonic lethality caused by mutations in basement membrane collagen of C. elegans. Nature 349:707–709. doi:10.1038/349707a0

    PubMed  CAS  Google Scholar 

  • Gupta MC, Graham PL, Kramer JM (1997) Characterization of α1(IV) collagen mutations in Caenorhabditis elegans and the effects of α1 and α2(IV) mutations on type IV collagen distribution. J Cell Biol 137:1185–1196. doi:10.1083/jcb.137.5.1185

    PubMed  CAS  Google Scholar 

  • Halfter W, Dong S, Schurer B, Cole GJ (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273:25404–25412. doi:10.1074/jbc.M212244200

    PubMed  CAS  Google Scholar 

  • Han R, Caswell CC, Lukomska E, Keene DR, Pawlowski M, Bujnicki JM, Kim JK, Lukomski S (2006) Binding of the low-density lipoprotein by streptococcal collagen-like protein Scl1 of Streptococcus pyogenes. Mol Microbiol 61:351–367. doi:10.1111/j.1365-2958.2006.05237.x

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 21:1524–1534. doi:10.1093/emboj/21.7.1524

    PubMed  CAS  Google Scholar 

  • Heino J, Huhtala M, Käpylä J, Johnson MS (2009) Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 41:341–348. doi:10.1016/j.biocel.2008.08.021

    PubMed  CAS  Google Scholar 

  • Hjorten R, Hansen U, Underwood RA, Telfer HE, Fernandes RJ, Krakow D, Sebald E, Wachsmann-Hogiu S, Bruckner P, Jacquet R, Landis WJ, Byers PH, Pace JM (2007) Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone 41:535–542. doi:10.1016/j.bone.2007.06.024

    PubMed  CAS  Google Scholar 

  • Hoffman GG, Branam AM, Huang G, Pelegri F, Cole WG, Wenstrup RM, Greenspan DS (2010) Characterization of the six zebrafish clade B fibrillar procollagen genes, with evidence for evolutionarily conserved alternative splicing within the pro-α1(V) C-propeptide. Matrix Biol 29:261–275. doi:10.1016/j.matbio.2010.01.006

    PubMed  CAS  Google Scholar 

  • Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. doi:10.4248/IJOS11026

    PubMed  Google Scholar 

  • Holland JW, Okamura B, Hartikainen H, Secombes CJ (2011) A novel minicollagen gene links cnidarians and myxozoans. Proc Biol Sci 278:546–553. doi:10.1098/rspb.2010.1301

    PubMed  CAS  Google Scholar 

  • Holstein TW, Benoit M, Herder GV, David CN, Wanner G, Gaub HE (1994) Fibrous mini-collagens in hydra nematocysts. Science 265:402–404. doi:10.1126/science.265.5170.402

    PubMed  CAS  Google Scholar 

  • Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Yu Y, Li J, Yang M, Xu L, Chen S, Xu A (2011) Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 286:36739–36748. doi:10.1074/jbc.M111.245944

    PubMed  CAS  Google Scholar 

  • Humtsoe JO, Kim JK, Xu Y, Keene DR, Höök M, Lukomski S, Wary KK (2005) A streptococcal collagen-like protein interacts with the α2ß1 integrin and induces intracellular signaling. J Biol Chem 280:13848–13857. doi:10.1074/jbc.M410605200

    PubMed  CAS  Google Scholar 

  • Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM (2000) Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287:989–994. doi:10.1126/science.287.5455.989

    PubMed  CAS  Google Scholar 

  • Huxley-Jones J, Robertson DL, Boot-Handford RP (2007) On the origins of the extracellular matrix in vertebrates. Matrix Biol 26:2–11. doi:10.1016/j.matbio.2006.09.008

    PubMed  CAS  Google Scholar 

  • Hwang ES, Thiagarajan G, Parmar AS, Brodsky B (2010a) Interruptions in the collagen repeating tripeptide pattern can promote supramolecular association. Protein Sci 19:1053–1064. doi:10.1002/pro.383

    PubMed  CAS  Google Scholar 

  • Hwang JS, Takaku Y, Momose T, Adamczyk P, Özbek S, Ikeo K, Khalturin K, Hemmrich G, Bosch TC, Holstein TW, David CN, Gojobori T (2010b) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci U S A 107:18539–18544. doi:10.1073/pnas.1003256107

    PubMed  CAS  Google Scholar 

  • Hynes RO (2012) Evolution: The evolution of metazoan extracellular matrix. J Cell Biol 196:671–679. doi:10.1083/jcb.201109041

    PubMed  CAS  Google Scholar 

  • Irimia M, Roy SW (2008) Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res 36:1703–1712. doi:10.1093/nar/gkn012

    PubMed  CAS  Google Scholar 

  • Johnstone IL (2000) Cuticle collagen genes. Expression in Caenorhabditis elegans. Trends Genet 16:21–27. doi:10.1016/S0168-9525(99)01857-0

    PubMed  CAS  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316:1–11

    PubMed  CAS  Google Scholar 

  • Kailas L, Terry C, Abbott N, Taylor R, Mullin N, Tzokov SB, Todd SJ, Wallace BA, Hobbs JK, Moir A, Bullough PA (2011) Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale. Proc Natl Acad Sci U S A 108:16014–16019. doi:10.1073/pnas.1109419108

    PubMed  CAS  Google Scholar 

  • Kassai-Jáger E, Ortutay C, Tóth G, Vellai T, Gáspári Z (2008) Distribution and evolution of short tandem repeats in closely related bacterial genomes. Gene 410:18–25. doi:10.1016/j.gene.2007.11.006

    PubMed  Google Scholar 

  • Katsanis N, Fitzgibbon J, Fisher EM (1996) Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101–108. doi:10.1006/geno.1996.0328

    PubMed  CAS  Google Scholar 

  • Kenjo A, Takahashi M, Matsushita M, Endo Y, Nakata M, Mizuochi T, Fujita T (2001) Cloning and characterization of novel ficolins from the solitary ascidian, Halocynthia roretzi. J Biol Chem 276:19959–19965. doi:10.1074/jbc.M011723200

    PubMed  CAS  Google Scholar 

  • Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281:38117–38121. doi:10.1074/jbc.R600025200

    PubMed  CAS  Google Scholar 

  • Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370. doi:10.1002/jemt.20564

    PubMed  CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788. doi:10.1038/nature06617

    PubMed  CAS  Google Scholar 

  • Kleman JP, Hartmann DJ, Ramirez F, van der Rest M (1992) The human rhabdomyosarcoma cell line A204 lays down a highly insoluble matrix composed mainly of α1 type-XI and α2 type-V collagen chains. Eur J Biochem 210:329–335. doi:10.1111/j.1432-1033.1992.tb17425.x

    PubMed  CAS  Google Scholar 

  • Koch M, Laub F, Zhou P, Hahn RA, Tanaka S, Burgeson RE, Gerecke DR, Ramirez F, Gordon MK (2003) Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J Biol Chem 278:43236–43244. doi:10.1074/jbc.M302112200

    PubMed  CAS  Google Scholar 

  • Kuraku S (2008) Insights into cyclostome phylogenomics: pre-2R or post-2R. Zoolog Sci 25:960–968. doi:10.2108/zsj.25.960

    PubMed  CAS  Google Scholar 

  • Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26:47–59. doi:10.1093/molbev/msn222

    PubMed  CAS  Google Scholar 

  • Langeveld JP, Noelken ME, Hård K, Todd P, Vliegenthart JF, Rouse J, Hudson BG (1991) Bovine glomerular basement membrane. Location and structure of the asparagine-linked oligosaccharide units and their potential role in the assembly of the 7 S collagen IV tetramer. J Biol Chem 266:2622–2631

    PubMed  CAS  Google Scholar 

  • Layton BE, D'Souza AJ, Dampier W, Zeiger A, Sabur A, Jean-Charles J (2008) Collagen's triglycine repeat number and phylogeny suggest an interdomain transfer event from a Devonian or Silurian organism into Trichodesmium erythraeum. J Mol Evol 66:539–554. doi:10.1007/s00239-008-9111-7

    PubMed  CAS  Google Scholar 

  • LeBleu VS, Macdonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232:1121–1129. doi:10.3181/0703-MR-72

    CAS  Google Scholar 

  • Lees JF, Tasab M, Bulleid NJ (1997) Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16:908–916. doi:10.1093/emboj/16.5.908

    PubMed  CAS  Google Scholar 

  • Leinonen A, Mariyama M, Mochizuki T, Tryggvason K, Reeders ST (1994) Complete primary structure of the human type IV collagen α4(IV) chain. Comparison with structure and expression of the other α(IV) chains. J Biol Chem 269:26172–26177

    PubMed  CAS  Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26:146–155. doi:10.1016/j.matbio.2006.10.007

    PubMed  CAS  Google Scholar 

  • Lepescheux L (1988) Spatial organization of collagen in annelid cuticle: order and defects. Biol Cell 62:17–31. doi:10.1111/j.1768-322X.1988.tb00702.x

    PubMed  CAS  Google Scholar 

  • Lethias C, Exposito JY, Garrone R (1997) Collagen fibrillogenesis during sea urchin development– retention of SURF motifs from the N-propeptide of the 2α chain in mature fibrils. Eur J Biochem 245:434–440. doi:10.1111/j.1432-1033.1997.t01-2-00434.x

    PubMed  CAS  Google Scholar 

  • Leys SP, Riesgo A (2012) Epithelia, an evolutionary novelty of metazoans. J Exp Zool B Mol Dev Evol. doi:10.1002/jez.b.21442

  • Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F et al (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–430. doi:10.1016/0092-8674(95)90492-1

    PubMed  CAS  Google Scholar 

  • Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, Birk DE (1993) Type V collagen: molecular structure and fibrillar organization of the chicken α1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121:1181–1189. doi:10.1083/jcb.121.5.1181

    PubMed  CAS  Google Scholar 

  • Loria PM, Hodgkin J, Hobert O (2004) A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. J Neurosci 24:2191–2201. doi:10.1523/JNEUROSCI.5462-03.2004

    PubMed  CAS  Google Scholar 

  • Luther KB, Hülsmeier AJ, Schegg B, Deuber SA, Raoult D, Hennet T (2011) Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme. J Biol Chem 286:43701–43709. doi:10.1074/jbc.M111.309096

    PubMed  CAS  Google Scholar 

  • Mann K, Mechling DE, Bächinger HP, Eckerskorn C, Gaill F, Timpl R (1996) Glycosylated threonine but not 4-hydroxyproline dominates the triple helix stabilizing positions in the sequence of a hydrothermal vent worm cuticle collagen. J Mol Biol 261:255–266. doi:10.1006/jmbi.1996.0457

    PubMed  CAS  Google Scholar 

  • Mariyama M, Kalluri R, Hudson BG, Reeders ST (1992) The α4(IV) chain of basement membrane collagen. Isolation of cDNAs encoding bovine α4(IV) and comparison with other type IV collagens. J Biol Chem 267:1253–1258

    PubMed  CAS  Google Scholar 

  • Marneros AG, Keene DR, Hansen U, Fukai N, Moulton K, Goletz PL, Moiseyev G, Pawlyk BS, Halfter W, Dong S, Shibata M, Li T, Crouch RK, Bruckner P, Olsen BR (2004) Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J 23:89–99. doi:10.1038/sj.emboj.7600014

    PubMed  CAS  Google Scholar 

  • Mayne R, Brewton RG, Mayne PM, Baker JR (1993) Isolation and characterization of the chains of type V/type XI collagen present in bovine vitreous. J Biol Chem 268:9381–9386

    PubMed  CAS  Google Scholar 

  • McAlinden A, Smith TA, Sandell LJ, Ficheux D, Parry DA, Hulmes DJ (2003) α-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278:42200–42207. doi:10.1074/jbc.M302429200

    PubMed  CAS  Google Scholar 

  • McElroy K, Mouton L, Du Pasquier L, Qi W, Ebert D (2011) Characterisation of a large family of polymorphic collagen-like proteins in the endospore-forming bacterium Pasteuria ramosa. Res Microbiol 162:701–714. doi:10.1016/j.resmic.2011.06.009

    PubMed  CAS  Google Scholar 

  • Meier S, Jensen PR, Adamczyk P, Bächinger HP, Holstein TW, Engel J, Ozbek S, Grzesiek S (2007) Sequence-structure and structure-function analysis in cysteine-rich domains forming the ultrastable nematocyst wall. J Mol Biol 368:718–728. doi:10.1016/j.jmb.2007.02.026

    PubMed  CAS  Google Scholar 

  • Meyer F, Moussian B (2009) Drosophila multiplexin (Dmp) modulates motor axon pathfinding accuracy. Dev Growth Differ 51:483–498. doi:10.1111/j.1440-169X.2009.01111.x

    PubMed  CAS  Google Scholar 

  • Miura S, Kimura S (1985) Jellyfish mesogloea collagen. Characterization of molecules as α1 α2 α3 heterotrimers. J Biol Chem 260:15352–15356

    PubMed  CAS  Google Scholar 

  • Mouton L, Traunecker E, McElroy K, Du Pasquier L, Ebert D (2009) Identification of a polymorphic collagen-like protein in the crustacean bacteria Pasteuria ramosa. Res Microbiol 160:792–799. doi:10.1016/j.resmic.2009.08.016

    PubMed  CAS  Google Scholar 

  • Murray LW, Tanzer ML (1983) Characterization of a large fragment from annelid cuticle collagen and its relationship to the intact molecule. Coll Relat Res 3:445–458

    PubMed  CAS  Google Scholar 

  • Myers JC, Amenta PS, Dion AS, Sciancalepore JP, Nagaswami C, Weisel JW, Yurchenco PD (2007) The molecular structure of human tissue type XV presents a unique conformation among the collagens. Biochem J 404:535–544. doi:10.1042/BJ20070201

    PubMed  CAS  Google Scholar 

  • Nagy A, Patthy L (2011) Reassessing domain architecture evolution of metazoan proteins: the contribution of different evolutionary mechanisms. Genes 2:578–598. doi:10.3390/genes2030578

    CAS  Google Scholar 

  • Nakano K, Hokamura K, Taniguchi N, Wada K, Kudo C, Nomura R, Kojima A, Naka S, Muranaka Y, Thura M, Nakajima A, Masuda K, Nakagawa I, Speziale P, Shimada N, Amano A, Kamisaki Y, Tanaka T, Umemura K, Ooshima T (2011) The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun 2:485. doi:10.1038/ncomms1491

    PubMed  Google Scholar 

  • Nayak BR, Spiro RG (1991) Localization and structure of the asparagine-linked oligosaccharides of type IV collagen from glomerular basement membrane and lens capsule. J Biol Chem 266:13978–13987

    PubMed  CAS  Google Scholar 

  • Netzer KO, Suzuki K, Itoh Y, Hudson BG, Khalifah RG (1998) Comparative analysis of the noncollagenous NC1 domain of type IV collagen: identification of structural features important for assembly, function, and pathogenesis. Protein Sci 7:1340–1351. doi:10.1002/pro.5560070610

    PubMed  CAS  Google Scholar 

  • Oh SP, Kamagata Y, Muragaki Y, Timmons S, Ooshima A, Olsen BR (1994) Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc Natl Acad Sci U S A 91:4229–4233. doi:10.1073/pnas.91.10.4229

    PubMed  CAS  Google Scholar 

  • Ohkubo H, Vogeli G, Mudryj M, Avvedimento VE, Sullivan M, Pastan I, de Crombrugghe B (1980) Isolation and characterization of overlapping genomic clones covering the chicken α2 (type I) collagen gene. Proc Natl Acad Sci U S A 77:7059–7063. doi:10.1073/pnas.77.12.7059

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Ohtani K, Yao T, Kobayashi M, Kusakabe R, Kuratani S, Wada H (2008) Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. J Exp Zool B Mol Dev Evol 310:596–607. doi:10.1002/jez.b.21231

    PubMed  Google Scholar 

  • Olinski RP, Lundin LG, Hallböök F (2006) Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family. Mol Biol Evol 23:10–22. doi:10.1093/molbev/msj002

    PubMed  CAS  Google Scholar 

  • Oliver-Kozup HA, Elliott M, Bachert BA, Martin KH, Reid SD, Schwegler-Berry DE, Green BJ, Lukomski S (2011) The streptococcal collagen-like protein-1 (Scl1) is a significant determinant for biofilm formation by group A Streptococcus. BMC Microbiol 11:262. doi:10.1186/1471-2180-11-262

    PubMed  CAS  Google Scholar 

  • Ozbek S (2011) The cnidarian nematocyst: a miniature extracellular matrix within a secretory vesicle. Protoplasma 248:635–640. doi:10.1007/s00709-010-0219-4

    PubMed  Google Scholar 

  • Ozbek S, Engel U, Engel J (2002) A switch in disulfide linkage during minicollagen assembly in hydra nematocysts or how to assemble a 150-bar-resistant structure. J Struct Biol 137:11–14. doi:10.1093/emboj/20.12.3063

    PubMed  Google Scholar 

  • Ozbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC (2010) The evolution of extracellular matrix. Mol Biol Cell 21:4300–4305. doi:10.1083/jcb.201109041

    PubMed  Google Scholar 

  • Pace JM, Corrado M, Missero C, Byers PH (2003) Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol 22:3–14. doi:10.1016/S0945-053X(03)00007-6

    PubMed  CAS  Google Scholar 

  • Pastor-Pareja JC, Xu T (2011) Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and perlecan. Dev Cell 21:245–256. doi:10.1016/j.devcel.2011.06.026

    PubMed  CAS  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712. doi:10.1016/j.cub.2009.02.052

    PubMed  CAS  Google Scholar 

  • Plumb DA, Dhir V, Mironov A, Ferrara L, Poulsom R, Kadler KE, Thornton DJ, Briggs MD, Boot-Handford RP (2007) Collagen XXVII is developmentally regulated and forms thin fibrillar structures distinct from those of classical vertebrate fibrillar collagens. J Biol Chem 282:12791–12795. doi:10.1074/jbc.C700021200

    PubMed  CAS  Google Scholar 

  • Popovici C, Leveugle M, Birnbaum D, Coulier F (2001) Coparalogy: physical and functional clusterings in the human genome. Biochem Biophys Res Commun 288:362–370. doi:10.1006/bbrc.2001.5794

    PubMed  CAS  Google Scholar 

  • Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–1628. doi:10.1242/dev.01037

    PubMed  Google Scholar 

  • Pozzolini M, Bruzzone F, Berilli V, Mussino F, Cerrano C, Benatti U, Giovine M (2012) Molecular characterization of a nonfibrillar collagen from the marine sponge Chondrosia reniformis Nardo 1847 and positive effects of soluble silicates on its expression. Mar Biotechnol 14(3):281–93. doi:10.1007/s10126-011-9415-2

    PubMed  CAS  Google Scholar 

  • Qin XX, Coyne KJ, Waite JH (1997) Tough tendons. Mussel byssus has collagen with silk-like domains. J Biol Chem 272:32623–32627. doi:10.1074/jbc.272.51.32623

    PubMed  CAS  Google Scholar 

  • Rasmussen M, Edén A, Björck L (2000) SclA, a novel collagen-like surface protein of Streptococcus pyogenes. Infect Immun 68:6370–6377. doi:10.1128/IAI.68.11.6370-6377.2000

    PubMed  CAS  Google Scholar 

  • Rasmussen M, Jacobsson M, Björck L (2003) Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J Biol Chem 278:32313–32316. doi:10.1074/jbc.M304709200

    PubMed  CAS  Google Scholar 

  • Reitzel AM, Sullivan JC, Traylor-Knowles N, Finnerty JR (2008) Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. Biol Bull 214:233–254

    PubMed  Google Scholar 

  • Reuter M, Caswell CC, Lukomski S, Zipfel PF (2010) Binding of the human complement regulators CFHR1 and factor H by streptococcal collagen-like protein 1 (Scl1) via their conserved C termini allows control of the complement cascade at multiple levels. J Biol Chem 285:38473–38485. doi:10.1074/jbc.M110.143727

    PubMed  CAS  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978. doi:10.1101/cshperspect.a004978

    PubMed  Google Scholar 

  • Rigby BJ, Robinson MS (1975) Thermal transitions in collagen and the preferred temperature range of animals. Nature 253:277–279. doi:10.1038/253277a0

    PubMed  CAS  Google Scholar 

  • Risteli J, Bächinger HP, Engel J, Furthmayr H, Timpl R (1980) 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem 108:239–250. doi:10.1111/j.1432-1033.1980.tb04717.x

    PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2005) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci U S A 102:4403–4408. doi:10.1073/pnas.0409891102

    PubMed  CAS  Google Scholar 

  • Rychel AL, Swalla BJ (2007) Development and evolution of chordate cartilage. J Exp Zool B Mol Dev Evol 308:325–335. doi:10.1002/jez.b.21157

    PubMed  Google Scholar 

  • Rychel AL, Smith SE, Shimamoto HT, Swalla BJ (2006) Evolution and development of the chordates: collagen and pharyngeal cartilage. Mol Biol Evol 23:541–549. doi:10.1093/molbev/msj055

    PubMed  CAS  Google Scholar 

  • Saito M, Takenouchi Y, Kunisaki N, Kimura S (2001) Complete primary structure of rainbow trout type I collagen consisting of α1(I)α2(I)α3(I) heterotrimers. Eur J Biochem 268:2817–2827. doi:10.1046/j.1432-1327.2001.02160.x

    PubMed  CAS  Google Scholar 

  • Segev F, Héon E, Cole WG, Wenstrup RJ, Young F, Slomovic AR, Rootman DS, Whitaker-Menezes D, Chervoneva I, Birk DE (2006) Structural abnormalities of the cornea and lid resulting from collagen V mutations. Invest Ophthalmol Vis Sci 47:565–573. doi:10.1167/iovs.05-0771

    PubMed  Google Scholar 

  • Seppinen L, Pihlajaniemi T (2011) The multiple functions of collagen XVIII in development and disease. Matrix Biol 30:83–92. doi:10.1016/j.matbio.2010.11.001

    PubMed  CAS  Google Scholar 

  • Sertié AL, Sossi V, Camargo AA, Zatz M, Brahe C, Passos-Bueno MR (2000) Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Hum Mol Genet 9:2051–2058. doi:10.1093/hmg/9.13.2051

    PubMed  Google Scholar 

  • Shah NK, Sharma M, Kirkpatrick A, Ramshaw JA, Brodsky B (1997) Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope. Biochemistry 36:5878–5883. doi:10.1021/bi963146c

    PubMed  CAS  Google Scholar 

  • Sicot FX, Exposito JY, Masselot M, Garrone R, Deutsch J, Gaill F (1997) Cloning of an annelid fibrillar-collagen gene and phylogenetic analysis of vertebrate and invertebrate collagens. Eur J Biochem 246:50–58. doi:10.1111/j.1432-1033.1997.00050.x

    PubMed  CAS  Google Scholar 

  • Sicot FX, Mesnage M, Masselot M, Exposito JY, Garrone R, Deutsch J, Gaill F (2000) Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. J Mol Biol 302:811–820. doi:10.1006/jmbi.2000.4505

    PubMed  CAS  Google Scholar 

  • Snellman A, Tuomisto A, Koski A, Latvanlehto A, Pihlajaniemi T (2007) The role of disulfide bonds and alpha-helical coiled-coils in the biosynthesis of type XIII collagen and other collagenous transmembrane proteins. J Biol Chem 282:14898–14905. doi:10.1074/jbc.M609605200

    PubMed  CAS  Google Scholar 

  • Söder S, Pöschl E (2004) The NC1 domain of human collagen IV is necessary to initiate triple helix formation. Biochem Biophys Res Commun 325:276–280. doi:10.1016/j.bbrc.2004.10.034

    PubMed  Google Scholar 

  • Sperling EA, Peterson KJ, Pisani D (2009) Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Mol Biol Evol 26:2261–2274. doi:10.1093/molbev/msp148

    PubMed  CAS  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726. doi:10.1038/nature09201

    PubMed  CAS  Google Scholar 

  • Su MW, Suzuki HR, Bieker JJ, Solursh M, Ramirez F (1991) Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts. J Cell Biol 115:565–575. doi:10.1083/jcb.115.2.565

    PubMed  CAS  Google Scholar 

  • Sun M, Chen S, Adams SM, Florer JB, Liu H, Kao WW, Wenstrup RJ, Birk DE (2011) Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J Cell Sci 124:4096–4105. doi:10.1242/jcs.091363

    PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Meiyappan M, Todd P, Hudson BG (2002) Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem 277:31142–31153. doi:10.1074/jbc.M201740200

    PubMed  CAS  Google Scholar 

  • Suzuki OT, Sertié AL, Der Kaloustian VM, Kok F, Carpenter M, Murray J, Czeizel AE, Kliemann SE, Rosemberg S, Monteiro M, Olsen BR, Passos-Bueno MR (2002) Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am J Hum Genet 71:1320–1329. doi:10.1086/344695

    PubMed  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178. doi:10.1046/j.1365-2958.2000.03000.x

    PubMed  CAS  Google Scholar 

  • Tahtouh M, Croq F, Vizioli J, Sautiere PE, Van Camp C, Salzet M, Daha MR, Pestel J, Lefebvre C (2009) Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol Immunol 46:523–531. doi:10.1016/j.molimm.2008.07.026

    PubMed  CAS  Google Scholar 

  • Takahara K, Hoffman GG, Greenspan DS (1995) Complete structural organization of the human α1(V) collagen gene (COL5A1): divergence from the conserved organization of other characterized fibrillar collagen genes. Genomics 29:588–597. doi:10.1006/geno.1995.9961

    PubMed  CAS  Google Scholar 

  • Than ME, Henrich S, Huber R, Ries A, Mann K, Kühn K, Timpl R, Bourenkov GP, Bartunik HD, Bode W (2002) The 1.9-A crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link. Proc Natl Acad Sci U S A 99:6607–6612. doi:10.1073/pnas.062183499

    PubMed  CAS  Google Scholar 

  • Than ME, Bourenkov GP, Henrich S, Mann K, Bode W (2005) The NC1 dimer of human placental basement membrane collagen IV: does a covalent crosslink exist? Biol Chem 386:759–766. doi:10.1515/BC.2005.089

    PubMed  CAS  Google Scholar 

  • Thom JR, Morris NP (1991) Biosynthesis and proteolytic processing of type XI collagen in embryonic chick sterna. J Biol Chem 266:7262–7269

    PubMed  CAS  Google Scholar 

  • Tillet E, Franc JM, Franc S, Garrone R (1996) The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen. Comp Biochem Physiol B Biochem Mol Biol 113:239–246. doi:10.1016/0305-0491(95)02014-4

    PubMed  CAS  Google Scholar 

  • Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kühn K (1981) A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 120:203–211. doi:10.1111/j.1432-1033.1981.tb05690.x

    PubMed  CAS  Google Scholar 

  • Upholt WB, Strom CM, Sandell LJ (1985) Structure of the type II collagen gene. Ann N Y Acad Sci 460:130–140. doi:10.1111/j.1749-6632.1985.tb51161.x

    PubMed  CAS  Google Scholar 

  • Väisänen MR, Väisänen T, Tu H, Pirilä P, Sormunen R, Pihlajaniemi T (2006) The shed ectodomain of type XIII collagen associates with the fibrillar fibronectin matrix and may interfere with its assembly in vitro. Biochem J 393:43–50. doi:10.1042/BJ20031974

    PubMed  Google Scholar 

  • van der Rest M, Mayne R (1988) Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263:1615–1618

    PubMed  Google Scholar 

  • Vanacore RM, Friedman DB, Ham AJ, Sundaramoorthy M, Hudson BG (2005) Identification of S-hydroxylysyl-methionine as the covalent cross-link of the noncollagenous (NC1) hexamer of the α1α1α2 collagen IV network: a role for the post-translational modification of lysine 211 to hydroxylysine 211 in hexamer assembly. J Biol Chem 280:29300–29310. doi:10.1074/jbc.M502752200

    PubMed  CAS  Google Scholar 

  • Vanacore R, Ham AJ, Voehler M, Sanders CR, Conrads TP, Veenstra TD, Sharpless KB, Dawson PE, Hudson BG (2009) A sulfilimine bond identified in collagen IV. Science 325:1230–1234. doi:10.1126/science.1176811

    PubMed  CAS  Google Scholar 

  • Veit G, Zimina EP, Franzke CW, Kutsch S, Siebolds U, Gordon MK, Bruckner-Tuderman L, Koch M (2007) Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J Biol Chem 282:27424–27435. doi:10.1074/jbc.M703425200

    PubMed  CAS  Google Scholar 

  • Vizzini A, Arizza V, Cervello M, Cammarata M, Gambino R, Parrinello N (2002) Cloning and expression of a type IX-like collagen in tissues of the ascidian Ciona intestinalis. Biochim Biophys Acta 1577:38–44. doi:10.1016/S0167-4781(02)00403-7

    PubMed  CAS  Google Scholar 

  • Vuoristo MM, Pihlajamaa T, Vandenberg P, Prockop DJ, Ala-Kokko L (1995) The human COL11A2 gene structure indicates that the gene has not evolved with the genes for the major fibrillar collagens. J Biol Chem 270:22873–22881. doi:10.1074/jbc.270.39.22873

    CAS  Google Scholar 

  • Wada H, Okuyama M, Satoh N, Zhang S (2006) Molecular evolution of fibrillar collagen in chordates, with implications for the evolution of vertebrate skeletons and chordate phylogeny. Evol Dev 8:370–377. doi:10.1111/j.1525-142X.2006.00109.x

    PubMed  CAS  Google Scholar 

  • Waite JH, Qin XX, Coyne KJ (1998) The peculiar collagens of mussel byssus. Matrix Biol 17:93–106. doi:10.1016/S0945-053X(98)90023-3

    PubMed  CAS  Google Scholar 

  • Waite JH, Vaccaro E, Sun C, Lucas JM (2002) Elastomeric gradients: a hedge against stress concentration in marine holdfasts? Philos Trans R Soc Lond B Biol Sci 357:143–153. doi:10.1098/rstb.2001.1025

    PubMed  CAS  Google Scholar 

  • Weis MA, Hudson DM, Kim L, Scott M, Wu JJ, Eyre DR (2010) Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly. J Biol Chem 285:2580–2590. doi:10.1074/jbc.M109.068726

    PubMed  CAS  Google Scholar 

  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337. doi:10.1074/jbc.M409622200

    PubMed  CAS  Google Scholar 

  • Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE, Soslowsky LJ, Birk DE (2011) Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 286:20455–20465. doi:10.1074/jbc.M111.223693

    PubMed  CAS  Google Scholar 

  • Wright GM, Keeley FW, Robson P (2001) The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell Tissue Res 304:165–174. doi:10.1007/s004410100374

    PubMed  CAS  Google Scholar 

  • Wu JJ, Weis MA, Kim LS, Carter BG, Eyre DR (2009) Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue. J Biol Chem 284:5539–5545. doi:10.1074/jbc.M806369200

    PubMed  CAS  Google Scholar 

  • Wu JJ, Weis MA, Kim LS, Eyre DR (2010) Type III collagen, a fibril network modifier in articular cartilage. J Biol Chem 285:18537–18544. doi:10.1074/jbc.M110.112904

    PubMed  CAS  Google Scholar 

  • Xiao J, Cheng H, Silva T, Baum J, Brodsky B (2011) Osteogenesis imperfecta missense mutations in collagen: structural consequences of a glycine to alanine replacement at a highly charged site. Biochemistry 50:10771–10780. doi:10.1021/bi201476a

    PubMed  CAS  Google Scholar 

  • Xu Y, Keene DR, Bujnicki JM, Höök M, Lukomski S (2002) Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J Biol Chem 277:27312–27318. doi:10.1074/jbc.M201163200

    PubMed  CAS  Google Scholar 

  • Yamada Y, Avvedimento VE, Mudryj M, Ohkubo H, Vogeli G, Irani M, Pastan I, de Crombrugghe B (1980) The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp. Cell 22:887–892. doi:10.1016/0092-8674(80)90565-6

    PubMed  CAS  Google Scholar 

  • Yandell M, Mungall CJ, Smith C, Prochnik S, Kaminker J, Hartzell G, Lewis S, Rubin GM (2006) Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS Comput Biol 2:e15. doi:10.1371/journal.pcbi.0020015

    PubMed  Google Scholar 

  • Yasothornsrikul S, Davis WJ, Cramer G, Kimbrell DA, Dearolf CR (1997) Viking: identification and characterization of a second type IV collagen in Drosophila. Gene 198:17–25. doi:10.1016/S0378-1119(97)00274-6

    PubMed  CAS  Google Scholar 

  • Yoneda C, Hirayama Y, Nakaya M, Matsubara Y, Irie S, Hatae K, Watabe S (1999) The occurrence of two types of collagen proα-chain in the abalone Haliotis discus muscle. Eur J Biochem 261:714–721. doi:10.1046/j.1432-1327.1999.00313.x

    PubMed  CAS  Google Scholar 

  • Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3(2):pii: a004911

    Google Scholar 

  • Yurchenco PD, Ruben GC (1987) Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol 105:2559–2568. doi:10.1083/jcb.105.6.2559

    PubMed  CAS  Google Scholar 

  • Zhang G, Cohn MJ (2006) Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A 103:16829–16833. doi:10.1073/pnas.0605630103

    PubMed  CAS  Google Scholar 

  • Zhang G, Miyamoto MM, Cohn MJ (2006) Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proc Natl Acad Sci U S A 103:3180–3185. doi:10.1073/pnas.0508313103

    PubMed  CAS  Google Scholar 

  • Zhang X, Boot-Handford RP, Huxley-Jones J, Forse LN, Mould AP, Robertson DL, Lili AM, Sarras MP Jr (2007) The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J Biol Chem 282:6792–6802. doi:10.1074/jbc.M607528200

    PubMed  CAS  Google Scholar 

  • Zhou J, Ding M, Zhao Z, Reeders ST (1994) Complete primary structure of the sixth chain of human basement membrane collagen, α6(IV). Isolation of the cDNAs for α6(IV) and comparison with five other type IV collagen chains. J Biol Chem 269:13193–13199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to David J. Hulmes for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Exposito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Exposito, JY., Lethias, C. (2013). Invertebrate and Vertebrate Collagens. In: Keeley, F., Mecham, R. (eds) Evolution of Extracellular Matrix. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36002-2_3

Download citation

Publish with us

Policies and ethics