Fluid Flow Analysis of RED Algorithm with Modified Weighted Moving Average

  • Joanna Domańska
  • Adam Domański
  • Tadeusz Czachórski
Part of the Communications in Computer and Information Science book series (CCIS, volume 356)


We study with the use of fluid flow approximation the impact of a modified weighted moving average on the performance of RED mechanism. A model of TCP/UDP connection with RED implemented in an intermediate IP router is used, the weighted moving average is determined on the basis of a difference (recursive) equation. The fluid flow approximation technique is applied to model the interactions between the set of TCP/UDP flows and RED mechanism.


Queue Length Congestion Window Random Early Detection Active Queue Management Average Queue Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augustyn, D.R., Domański, A., Domańska, J.: Active Queue Management with non linear packet dropping function. In: 6th International Conference on Performance Modelling and Evaluation of Heterogeneous Networks, HET-NETs (2010)Google Scholar
  2. 2.
    Augustyn, D.R., Domański, A., Domańska, J.: A Choice of Optimal Packet Dropping Function for Active Queue Management. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 199–206. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Domańska, J., Domański, A., Augustyn, D.R.: The Impact of the Modified Weighted Moving Average on the Performance of the RED Mechanism. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 37–44. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Chang Feng, W., Kandlur, D., Saha, D.: Adaptive packet marking for maintaining end to end throughput in a differentiated service internet. IEEE/ACM Transactions on Networking 7(5) (1999)Google Scholar
  5. 5.
    Chen, J., Paganini, F., Wang, R., Sanadidi, M.Y., Gerla, M.: Fluid-flow Analysis of TCP Westwood with RED. In: GLOBECOM (2004)Google Scholar
  6. 6.
    Czachórski, T., Grochla, K., Pekergin, F.: Stability and Dynamics of TCP-NCR(DCR) Protocol in Presence of UDP Flows. In: García-Vidal, J., Cerdà-Alabern, L. (eds.) Euro-NGI 2007. LNCS, vol. 4396, pp. 241–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Domańska, J., Domański, A., Czachórski, T.: The drop-from-front strategy in AQM. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 61–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Domańska, J., Domański, A., Czachórski, T.: Implementation of modified AQM mechanisms in IP routers. Journal of Communications Software and Systems 4(1) (March 2008)Google Scholar
  9. 9.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking 1(4) (1993)Google Scholar
  10. 10.
    Hollot, C.V., Misra, V., Towsley, D.: A control theoretic analysis of RED. In: IEEE/INFOCOM (2001)Google Scholar
  11. 11.
    Hollot, C.V., Misra, V., Towsley, D., Gong, W.-B.: On Designing Improved Controllers for AQM Routers Supporting TCP Flows. In: IEEE INFOCOM (2002)Google Scholar
  12. 12.
    Hollot, C.V., Misra, V., Towsley, D., Gong, W.-B.: Analysis and design of controllers for AQM Routers Supporting TCP Flows. IEEE Trans. Automatic Control 47(6) (2002)Google Scholar
  13. 13.
    Kiddle, C., Simmonds, R., Williamson, C., Unger, B.: Hybrid packet/fluid flow network simulation. In: Parallel and Distributed Simulation (2003)Google Scholar
  14. 14.
    Liu, C., Jain, R.: Improving explicit congestion notification with the mark-front strategy. Computer Networks 35(2-3) (2000)Google Scholar
  15. 15.
    May, M., Diot, C., Lyles, B., Bolot, J.: Influence of active queue management parameters on aggregate traffic performance. Technical report, Research Report, Institut de Recherche en Informatique et en Automatique (2000)Google Scholar
  16. 16.
    Misra, V., Gong, W.-B., Towsley, D.: Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED. In: ACM SIGCOMM (2000)Google Scholar
  17. 17.
    Mao, P., Xiao, Y., Hu, S., Kim, K.: Stable parameter settings for PI router mixing TCP and UDP traffic. In: IEEE 10th International Conference on Signal Processing, ICSP (2010)Google Scholar
  18. 18.
  19. 19.
    Rahme, S., Labit, Y., Gouaisbaut, F.: An unknown input sliding observer for anomaly detection in TCP/IP networks. In: Ultra Modern Telecommunications & Workshops (2009)Google Scholar
  20. 20.
    Wang, L., Li, Z., Chen, Y.-P., Xue, K.: Fluid-based stability analysis of mixed TCP and UDP traffic under RED. In: 10th IEEE International Conference on Engineering of Complex Computer Systems (2005)Google Scholar
  21. 21.
    Yung, T.K., Martin, J., Takai, M., Bagrodia, R.: Integration of fluid-based analytical model with Packet-Level Simulation for Analysis of Computer Networks. In: SPIE (2001)Google Scholar
  22. 22.
    Zhou, K., Yeung, K.L., Li, V.O.K.: Nonlinear RED: Asimple yet efficient active queue management scheme. Computer Networks 50 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joanna Domańska
    • 2
  • Adam Domański
    • 1
  • Tadeusz Czachórski
    • 2
  1. 1.Institute of InformaticsSilesian Technical UniversityGliwicePoland
  2. 2.Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland

Personalised recommendations