Discrete-Time Queueing System with Expulsions

  • Iván Atencia
  • Inmaculada Fortes
  • Sixto Sánchez
Part of the Communications in Computer and Information Science book series (CCIS, volume 356)


In this paper we analyze a discrete-time queueing system in which an arriving customer can decide, with a certain probability, to go directly to the server expelling out of the system the customer that is currently in service or to join the queue in the last place. The arrivals are assumed to be geometrical and the service times are arbitrarily distributed. We present some numerical examples in order to illustrate the effect of the parameters on several performance characteristics.


Discrete-time expulsions recurrent formulae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atencia, I., Pechinkin, A.V.: A discrete-time queueing system with optional LCFS discipline. Ann. Oper. Res. (2012), doi:10.1007/s10479-012-1097-2Google Scholar
  2. 2.
    Birdsall, T., Ristenbatt, M., Weinstein, S.: Analysis of asynchronous time multiplexing of speech sources. IRE Transactions on Communication Systems 10, 390–397 (1962)CrossRefGoogle Scholar
  3. 3.
    Bruneel, H., Kim, B.G.: Discrete-time models for communication systems including ATM. Kluwer Academic Publishers, Boston (1993)CrossRefGoogle Scholar
  4. 4.
    Cascone, A., Manzo, P., Pechinkin, A., Shorgin, S.: A Geom/G/1/n system with a LIFO discipline without interruptions in the service and with a limitation for the total capacity for the customers. Avtomatika i Telemejanika 1, 107–120 (2011) (in Russian)Google Scholar
  5. 5.
    Hunter, J.: Mathematical Techniques of Applied Probability. Operations Research and Industrial Engineering, vol. 1. Academic Press, New York (1983)Google Scholar
  6. 6.
    Hunter, J.: Mathematical Techniques of Applied Probability, Discrete-Time Models: Techniques and Applications. Operations Research and Industrial Engineering, vol. 2. Academic Press, New York (1983)Google Scholar
  7. 7.
    Meisling, T.: Discrete time queueing theory. Oper. Res. 6, 96–105 (1958)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pechinkin, A., Svischeva, T.: The stationary state probability in the BMAP/G/1/r queueing system with inverse discipline and probabilistic priority. In: Transactions of XXIV International Seminar on Stability Problems for Stochastic Models, Jurmala, Latvia, September 10-17, pp. 141–174 (2004)Google Scholar
  9. 9.
    Pechinkin, A., Shorgin, S.: A Geo/G/1/ ∞ system with a one non-standard discipline for the service. Informatics and it Applications 2, 55–62 (2008) (in Russian)Google Scholar
  10. 10.
    Powell, B., Avi-Itzhak, B.: Queueing systems with enforced idle times. Operations Research 15(6), 1145–1156 (1967)zbMATHCrossRefGoogle Scholar
  11. 11.
    Takagi, H.: Queueing analysis: A foundation of performance evaluation. Discrete-Time Systems, vol. 3. North-Holland, Amsterdam (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Iván Atencia
    • 1
  • Inmaculada Fortes
    • 1
  • Sixto Sánchez
    • 1
  1. 1.Dept. Matemática AplicadaE.T.S. Ingeniería InformáticaMálagaSpain

Personalised recommendations