Advertisement

Multidimensional Alternative Processes Reliability Models

  • Vladimir Rykov
Part of the Communications in Computer and Information Science book series (CCIS, volume 356)

Abstract

Multidimensional alternative processes are introduced, their stationary and quasi-stationary probabilities are investigated, and their applications in reliability models are considered.

Keywords

alternative processes reliability models quasi-stationary probabilities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rykov, V., Dimitrov, B.: On Multi-State Reliability Systems. Applied Stochastic Models and Information Processes. In: Proceedings of the International Seminar, Petrozavodsk, September 8-13, pp. 128–135 (2002), http://www.jip.ru/2002-2-2-2002.htm
  2. 2.
    Rykov, V., Dimitrov, B., Green Jr., D., Snanchev, P.: Reliability of complex hierarchical systems with fault tolerance units. In: Proceedings MMR 2004, Santa Fe (U.S.A.) (2004) (printed in CD)Google Scholar
  3. 3.
    Dimitrov, B., Green Jr., D., Rykov, V., Stanchev, P.: Reliability Model for Biological Objects. Longevity, Aging and Degradation Models. In: Antonov, V., Huber, C., Nikulin, M., Polischook, V. (eds.) Transactions of the First Russian-French Conference (LAD 2004), Saint Petersburg State Politechnical University, SPB, June 7-9, vol. 2, pp. 230–240 (2004)Google Scholar
  4. 4.
    Lisniansky, A., Levitin, G.: Multi-State System Reliability. Assessment, Optimization and Application, p. 358. World Scientific, New JerseyGoogle Scholar
  5. 5.
    Rykov, V., Efrosinin, D.: Reliability Control of Fault Tolerance Units. In: Proceedings MMR 2004, Santa Fe (U.S.A.) (2004) (published in CD)Google Scholar
  6. 6.
    Rykov, V., Efrosinin, D.: Reliability Control of Biological Systems with failures. Longevity, Aging and Degradation Models. In: Antonov, V., Huber, C., Nikulin, M., Polischook, V. (eds.) Transactions of the First Russian-French Conference (LAD 2004), Saint Petersburg State Politechnical University, SPB, vol. 2, pp. 241–255 (2004)Google Scholar
  7. 7.
    van Doorn, E.A.: Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 26, 683–700 (1991)CrossRefGoogle Scholar
  8. 8.
    Kijima, M., Nair, M.G., Pollet, P.K., van Doorn, E.A.: Limiting conditional distributions for birth-death processes. Adv. Appl. Probab. 29, 185–204 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Granovsky, B.L., Zeifman, A.: Nonstationary queues: estimation of the rate of convergence. Queueing Systems 46, 363–388 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Rykov, V.: Generalized birth and death processes as degradation models. In: Vonta, F. (ed.) Proceedings of the International Conference Statistical Methods for Biomedical and Technical Systems, Limassol, Cyprus, Univ of Cyprus, Nicosia (2006)Google Scholar
  11. 11.
    Petrovsky, I.G.: Lections on theory usual differential equations. M.-L.: GITTL. p. 232 (1952) (in Russian)Google Scholar
  12. 12.
    Vishnevsky, V.M., Kozyrev, D.V., Rykov, V.V.: On reliability of hibrid system multimedia information thansmission. In: Proceedings BWWT 2013, Minsk (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir Rykov
    • 1
  1. 1.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations