Optimal Choice of the Capacities of Telecommunication Networks to Provide QoS-Routing

  • E. Girlich
  • M. M. Kovalev
  • N. I. Listopad
Part of the Communications in Computer and Information Science book series (CCIS, volume 356)


The problems of telecommunication networks designing could be presented into three aspects: 1) choice of the capacity for each telecommunication link with total minimum network cost; 2) QoS-routing of multicommodity flows in the synthesized network for all forecasting demands and 3) providing a necessary level of survivability. We consider QoS-routing, taking into account various performance requirements: delay, variation of the delay (jitter), bandwidth, packet loss probability. In this article we consider QoS-routing adding to consideration new constraints which provide the delay requirements as the important part of QoS.


telecommunication networks design optimization in telecommunication multicommodity flows QoS-routing survivability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resende, M., Pardalos, P.: Handbook of Optimization in Telecommunications. Springer Science, Business Media (2006)Google Scholar
  2. 2.
    Van Mieghem, P., Kuipers, F.A., Korkmaz, T., Krunz, M., Curado, M., Monteiro, E., Masip-Bruin, X., Solé-Pareta, J., Sánchez-López, S.: Quality of Service Routing. In: Smirnov, M. (ed.) COST 263 Final Report. LNCS, vol. 2856, pp. 80–117. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Girlich, E., Kovalev, M.M., Listopad, N.I.: Optimization of the Topology and the Capacities of Telecommunications Networks,
  4. 4.
    Chifflet, J., Hadjiat, M., Maurras, J.-F., Vaxes, Y.: A Primal Partitioning Approach for Single and Non-Simultaneous Multicommodity Flow Problems. Discrete Mathematics 1 (1998)Google Scholar
  5. 5.
    Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plan algorithm for designing communication networks with low-connectivity constraints. Operations Research 2(3), 474–504 (1992)zbMATHGoogle Scholar
  6. 6.
    Gröstchel, M., Monma, C.I., Stoer, M.: Polyhedral anad Computational Investigations for designing Communication networks with High Survivability Requirements. Konrad-Zuse-Zentrum für Informationstechnik Berlin. Preprint SC 92-94, (1992)Google Scholar
  7. 7.
    Hu, T.: Integer programming and flows in networks. Addison-Wesley, CityLondon (1970)Google Scholar
  8. 8.
    Maurras, J.F., Vaxes, Y.: Multicommodity network flow with jump constraints. Discrete Mathematics 165–166 (1997)Google Scholar
  9. 9.
    Minoux, M.: Optimum synthes of a network with non-simultaneous multicommodity flow requirements in Stadies on Graphs and Diskrete Programming, pp. 269–277. North Holland (1981)Google Scholar
  10. 10.
    Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable networks. In: Handbook in Operations Research and Management Science. Network Models, pp. 617–672. North-Holland (1995)Google Scholar
  11. 11.
    Listopad, N.: Modelling and optimization of global networks. Byelorussian State University, Minsk (2000)Google Scholar
  12. 12.
    Kuipers, F.A.: Quality of Service Routing in the Internet. Theory, Complexity and Algorithms. Delft University Press (2004)Google Scholar
  13. 13.
    Holnberg, K., Yuan, D.: A lagrangian hueristic based branch-and-bound approch for the capacitated network design problem. Operation Research 48(3), 461–481 (2000)CrossRefGoogle Scholar
  14. 14.
    Kovalev, M., Pisaruk, M.: Modern linear programming. Byelarussian State University, Minsk (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Girlich
    • 1
  • M. M. Kovalev
    • 2
  • N. I. Listopad
    • 3
  1. 1.Fakultät für MathematikOtto-von-Guericke-UniversitätMagdeburgGermany
  2. 2.Department of EconomicsBelarusian State UniversityMinskBelarus
  3. 3.Department of RadioelectronicsBelarusian State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations