Skip to main content

Pronto: A Practical Probabilistic Description Logic Reasoner

  • Conference paper
Book cover Uncertainty Reasoning for the Semantic Web II (URSW 2010, URSW 2009, URSW 2008, UniDL 2010)

Abstract

This paper presents Pronto—the first probabilistic Description Logic (DL) reasoner capable of processing knowledge bases containing about a thousand of probabilistic axioms. We describe in detail the novel probabilistic satisfiability (PSAT) algorithm which lies at the heart of Pronto’s architecture. Its key difference from previously developed (propositional) PSAT algorithms is its interaction with the underlying DL reasoner which, first, enables applying well-known linear programming techniques to non-propositional PSAT and, second, is crucial to scaling with respect the amount of classical (non-probabilistic) knowledge. The latter is the key feature for dealing with probabilistic extensions of existing large ontologies. Finally we present the layered architecture of Pronto and demonstrate the experimental evaluation results on randomly generated instances of non-propositional PSAT.

This work has been carried out when the first author was a doctoral student at the University of Manchester, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6-7), 852–883 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacchus, F.: Representing and reasoning with probabilistic knowledge. MIT Press (1990)

    Google Scholar 

  5. Cozman, F.G., de Campos, C.P., da Rocha, J.C.F.: Probabilistic logic with independence. International Journal of Approximate Reasoning 49(1), 3–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic satisfiability. International Journal of Approximate Reasoning 47(2), 125–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klinov, P.: Practical Reasoning in Probabilistic Description Logic. PhD thesis, The University of Manchester (2011)

    Google Scholar 

  8. Klinov, P., Parsia, B., Picado-Muiño, D.: The consistency of the medical expert system CADIAG-2: A probabilistic approach. Journal of Information Technology Research 4(1), 1–20 (2011)

    Article  Google Scholar 

  9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Knowledge Representation and Reasoning, pp. 57–67 (2006)

    Google Scholar 

  10. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in description logics. Information and Computation 199(1-2), 132–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klinov, P., Parsia, B.: A Hybrid Method for Probabilistic Satisfiability. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 354–368. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Research 8, 101–111 (1960)

    Article  MATH  Google Scholar 

  13. Chvátal, V.: Linear programming. A Series of Books in the Mathematical Sciences. W.H. Freeman and Company, New York (1983)

    MATH  Google Scholar 

  14. Hooker, J.N.: Quantitative approach to logical reasoning. Decision Support Systems 4, 45–69 (1988)

    Article  Google Scholar 

  15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

    Article  Google Scholar 

  16. Lynce, I., Silva, J.P.M.: On computing minimum unsatisfiable cores. In: International Conference on Theory and Applications of Satisfiability Testing (2004)

    Google Scholar 

  17. Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Justifications in OWL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory and practice. Journal of Artificial Intelligence Research 31, 273–318 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I extract? In: International Workshop on Description Logic (2009)

    Google Scholar 

  20. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32, 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Georgakopoulos, G.F., Kavvadias, D.J., Papadimitriou, C.H.: Probabilistic satisfiability. Journal of Complexity 4(1), 1–11 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kavvadias, D.J., Papadimitriou, C.H.: A linear programming approach to reasoning about probabilities. Annals of Mathematics and Artificial Intelligence 1, 189–205 (1990)

    Article  MATH  Google Scholar 

  23. Hooker, J.: A mathematical programming model for probabilistic logic. Working Paper 05-88-89, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213 (1988)

    Google Scholar 

  24. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for probabilistic logic. In: Integer Programming and Combinatorial Optimization Conference, pp. 313–331 (1990)

    Google Scholar 

  25. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for probabilistic logic. INFORMS Journal on Computing 3(2), 135–148 (1991)

    Article  MATH  Google Scholar 

  26. Hansen, P., Jaumard, B., Nguetsé, G.B.D., de Aragão, M.P.: Models and algorithms for probabilistic and Bayesian logic. In: International Joint Conference on Artificial Intelligence, pp. 1862–1868 (1995)

    Google Scholar 

  27. Hansen, P., Jaumard, B., de Aragão, M.P., Chauny, F., Perron, S.: Probabilistic satisfiability with imprecise probabilities. International Journal of Approximate Reasoning 24(2-3), 171–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Coletti, G., Gilio, A., Scozzafava, R.: Comparative probability for conditional events: a new look through coherence. Theory and Decision 35, 237–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ognjanović, Z., Midić, U., Kratica, J.: A Genetic Algorithm for Probabilistic SAT Problem. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 462–467. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Ognjanović, Z., Midić, U., Mladenović, N.: A Hybrid Genetic and Variable Neighborhood Descent for Probabilistic SAT Problem. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 42–53. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Jovanovic, D., Mladenovic, N., Ognjanovic, Z.: Variable neighborhood search for the probabilistic satisfiability problem. In: International Conference on Metaheuristics, pp. 557–562 (2005)

    Google Scholar 

  32. de Souza Andrade, P.S., da Rocha, J.C.F., Couto, D.P., da Costa Teves, A., Cozman, F.G.: A toolset for propositional probabilistic logic. In: Encontro Nacional de Inteligencia Artificial, 1371–1380 (2007)

    Google Scholar 

  33. Klinov, P., Parsia, B.: Probabilistic modeling and OWL: A user oriented introduction into P-\(\mathcal{SHIQ}\)(D). In: OWL: Experiences and Directions (2008)

    Google Scholar 

  34. Castano, S., Ferrara, A., Lorusso, D., Näth, T.H., Möller, R.: Mapping Validation by Probabilistic Reasoning. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 170–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klinov, P., Parsia, B. (2013). Pronto: A Practical Probabilistic Description Logic Reasoner. In: Bobillo, F., et al. Uncertainty Reasoning for the Semantic Web II. URSW URSW URSW UniDL 2010 2009 2008 2010. Lecture Notes in Computer Science(), vol 7123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35975-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35975-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35974-3

  • Online ISBN: 978-3-642-35975-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics