Skip to main content

Representing Uncertain Concepts in Rough Description Logics via Contextual Indiscernibility Relations

  • Conference paper
Uncertainty Reasoning for the Semantic Web II (URSW 2010, URSW 2009, URSW 2008, UniDL 2010)

Abstract

We investigate the modeling of uncertain concepts via rough description logics (RDLs), which are an extension of traditional description logics (DLs) by a mechanism to handle approximate concept definitions via lower and upper approximations of concepts based on a rough-set semantics. This allows to apply RDLs to modeling uncertain knowledge. Since these approximations are ultimately grounded on an indiscernibility relation, we explore possible logical and numerical ways for defining such relations based on the considered knowledge. In particular, we introduce the notion of context, allowing for the definition of specific equivalence relations, which are directly used for lower and upper approximations of concepts. The notion of context also allows for defining similarity measures, which are used for introducing a notion of tolerance in the indiscernibility. Finally, we describe several learning problems in our RDL framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press (2003)

    Google Scholar 

  2. d’Amato, C., Fanizzi, N., Esposito, F.: Query Answering and Ontology Population: An Inductive Approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. De Comité, F., Denis, F., Gilleron, R., Letouzey, F.: Positive and Unlabeled Examples Help Learning. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720, pp. 219–230. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Doherty, P., Grabowski, M., Łukaszewicz, W., Szalas, A.: Towards a framework for approximate ontologies. Fundamenta Informaticae 57(2-4), 147–165 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Donini, F., Lenzerini, M., Nardi, D., Nutt, W.: An epistemic operator for description logics. Artificial Intelligence 100(1/2), 225–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fanizzi, N., d’Amato, C., Esposito, F.: Randomized metric induction and evolutionary conceptual clustering for semantic knowledge bases. In: Proceedings of the 16th Conference on Information and Knowledge Management, CIKM 2007, pp. 51–60. ACM Press (2007)

    Google Scholar 

  7. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Fanizzi, N., d’Amato, C., Esposito, F.: Conceptual Clustering and Its Application to Concept Drift and Novelty Detection. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 318–332. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Fanizzi, N., d’Amato, C., Esposito, F.: Statistical Learning for Inductive Query Answering on OWL Ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 195–212. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Fanizzi, N., d’Amato, C., Esposito, F., Lukasiewicz, T.: Representing uncertain concepts in rough description logics via contextual indiscernibility relations. In: Proceedings of the 4th International Workshop on Uncertainty Reasoning for the Semantic Web, URSW 2008. CEUR Workshop Proceedings, vol. 423. CEUR-WS.org (2008)

    Google Scholar 

  11. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of Concepts in Web Ontologies through Terminological Decision Trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 442–457. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Goldstone, R., Medin, D., Halberstadt, J.: Similarity in context. Memory and Cognition 25(3), 237–255 (1997)

    Google Scholar 

  13. Hirano, S., Tsumoto, S.: An indiscernibility-based clustering method. In: Proceedings of the 2005 IEEE International Conference on Granular Computing, pp. 468–473. IEEE Computer Society (2005)

    Google Scholar 

  14. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Applied Intelligence 26(2), 139–159 (2007)

    Article  Google Scholar 

  15. Lehmann, J., Hitzler, P.: A Refinement Operator Based Learning Algorithm for the \({\cal ALC}\) Description Logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Machine Learning Research 10, 2639–2642 (2009)

    MATH  Google Scholar 

  17. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics 6(4), 291–308 (2008)

    Article  Google Scholar 

  18. Jiang, Y., Wang, J., Tang, S., Xiao, B.: Reasoning with rough description logics: An approximate concepts approach. Information Sciences 179(5), 600–612 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keet, C.M.: On the feasibility of description logic knowledge bases with rough concepts and vague instances. In: Proceedings of the 23rd International Workshop on Description Logics, DL 2010. CEUR Workshop Proceedings, vol. 573. CEUR-WS.org (2010)

    Google Scholar 

  20. Keet, C.M.: Ontology Engineering with Rough Concepts and Instances. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 503–513. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Mitchell, T.: Machine Learning. McGraw-Hill (1997)

    Google Scholar 

  22. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers (1991)

    Google Scholar 

  23. Schlobach, S., Klein, M.C.A., Peelen, L.: Description logics with approximate definitions — precise modeling of vague concepts. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 557–562 (2007)

    Google Scholar 

  24. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search — The Metric Space Approach. Advances in Database Systems. Springer (2007)

    Google Scholar 

  25. Zhang, B., Zuo, W.: Learning from positive and unlabeled examples: A survey. In: Proceeding of the International Symposium on Information Processing, ISP 2008, pp. 650–654 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

d’Amato, C., Fanizzi, N., Esposito, F., Lukasiewicz, T. (2013). Representing Uncertain Concepts in Rough Description Logics via Contextual Indiscernibility Relations. In: Bobillo, F., et al. Uncertainty Reasoning for the Semantic Web II. URSW URSW URSW UniDL 2010 2009 2008 2010. Lecture Notes in Computer Science(), vol 7123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35975-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35975-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35974-3

  • Online ISBN: 978-3-642-35975-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics