Skip to main content

An LMI Approach to Exponential Stock Level Estimation for Large-Scale Logistics Networks

  • Conference paper
  • First Online:
Dynamics in Logistics

Part of the book series: Lecture Notes in Logistics ((LNLO))

  • 2161 Accesses

Abstract

This article aims to present a convex optimization approach for exponential stock level estimation problem of large-scale logistics networks. The model under consideration presents the dependency and interconnections between the dynamics of each single location. Using a Lyapunov function, new sufficient conditions for exponential estimation of the networks are driven in terms of linear matrix inequalities (LMIs). The explicit expression of the observer gain is parameterized based on the solvability conditions. A numerical example is included to illustrate the applicability of the proposed design method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Busawon KK, Saif M (1999) A state observer for nonlinear systems. IEEE Trans Autom Control 44:2098–2103

    Article  MathSciNet  MATH  Google Scholar 

  • Dashkovskiy S, Karimi HR, Kosmykov M, Mironchenko A, Naujok L (2010) Application of the LISS Lyapunov-Krasovskii small-gain theorem to autonomously controlled production networks with time-delays. In Proceedings of the conference on control and fault-tolerant systems, pp. 765–770, Nice, France

    Google Scholar 

  • Dashkovskiy S, Karimi HR, Kosmykov M (2012) A Lyapunov-Razumikhin approach for stability analysis of logistics networks with time-delays. Int J Syst Sci 43(5):845–853

    Article  MathSciNet  Google Scholar 

  • Duffie N, Falu I (2002) Control-theoretic analysis of a closed-loop PPC system. Ann CIRP 5111:379–382

    Article  Google Scholar 

  • Duffie NA, Roy D, Shi L (2008) Dynamic modelling of production networks of autonomous work systems with local capacity control. CIRP Ann Manuf Technol 57:463–466

    Article  Google Scholar 

  • Gahinet P, Nemirovsky A, Laub AJ, Chilali M (1995) LMI control toolbox: for use with matlab. The MATH Works, Inc., Natik

    Google Scholar 

  • Gao H, Lam J, Xie LH, Wang CH (2005) New approach to mixed H2/H∝ filtering for polytopic discrete-time systems. IEEE Tran Signal Process 53(8):3183–3192

    Article  MathSciNet  Google Scholar 

  • Gu DW, Poon FW (2001) A robust state observer scheme. IEEE Trans Autom Control 46:1958–1963

    Article  MathSciNet  MATH  Google Scholar 

  • Helo P (2000) Dynamic modelling of surge effect and capacity limitation in supply chains. Int J Prod Res 38(17):4521–4533

    Article  Google Scholar 

  • Huang GQ, Lau JSK, Mak KL (2003) The impacts of sharing production information on supply chain dynamics: a review of the literature. Int J Prod Res 41(7):1483–1517

    Article  Google Scholar 

  • Karimi HR (2008) Observer-based mixed H2/H∝ control design for linear systems with time-varying delays: an LMI approach. Int J Control Autom Sys 6(1):1–14

    Google Scholar 

  • Karimi HR, Duffie NA, Dashkovskiy S (2010) Local capacity H∝ control for production networks of autonomous work systems with time-varying delays (regular paper). IEEE Trans Autom Sci Eng 7(4):849–857

    Article  Google Scholar 

  • Karimi HR, Dashkovskiy S, Duffie NA (2011) Stability analysis of large scale networks of autonomous work systems with delays’: dynamics in logistics. Springer, Heidelberg, pp 69–78

    Google Scholar 

  • Khalil HK (1992) Nonlinear systems. Macmillan, New York

    MATH  Google Scholar 

  • Khargonekar PP, Rotea MA, Baeyens E (1996) Mixed H2/H∝ filtering. Int J Robust Nonlinear Control 6(6):313–330

    Article  MathSciNet  MATH  Google Scholar 

  • Lien CH (2004) Robust observer-based control of systems with state perturbations via LMI approach. IEEE Trans Autom Control 49(8):1365–1370

    Article  MathSciNet  Google Scholar 

  • Monostori L, Csaji BC, Kadar B (2004) Adaptation and learning in distributed production control. Ann CIRP 53(1):349–352

    Article  Google Scholar 

  • Nyhuis P, Cieminski G, Fischer A (2005) Applying simulation and analytical models for logistic performance prediction. Ann CIRP 54(1):417–422

    Article  Google Scholar 

  • Scholz-Reiter B, Freitag M, de Beer C, Jagalski T (2005) Modelling dynamics of autonomous logistic processes: discrete-event versus continuous approaches. CIRP Ann Manuf Technol 54(1):413–416

    Article  Google Scholar 

  • Thau FE (1973) Observing the state of nonlinear dynamic systems. Int J Control 17:471–479

    Article  MATH  Google Scholar 

  • Trinh H, Fernando T, Nahavandi S (2006) Partial-state observers for nonlinear systems. IEEE Trans Autom Control 51(11):1808–1812

    Article  MathSciNet  Google Scholar 

  • Weber A (1909) Uber den Standort der Industrien, – translated as Alfred Weber’s theory of location of industries. University of Chicago Press, Chicago

    Google Scholar 

  • Wiendahl H-P, Lutz S (2002) Production in networks. Ann CIRP 52(2):573–586

    Article  Google Scholar 

  • Zitek P (1998) Anisochronic state observers for hereditary systems. Int J Control 71:581–599

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karimi, H.R. (2013). An LMI Approach to Exponential Stock Level Estimation for Large-Scale Logistics Networks. In: Kreowski, HJ., Scholz-Reiter, B., Thoben, KD. (eds) Dynamics in Logistics. Lecture Notes in Logistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35966-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35966-8_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35965-1

  • Online ISBN: 978-3-642-35966-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics