IWOCA 2012: Combinatorial Algorithms pp 65-72

# On the Steiner Radial Number of Graphs

• K. M. Kathiresan
• S. Arockiaraj
• R. Gurusamy
• K. Amutha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)

## Abstract

The Steiner n-radial graph of a graph G on p vertices, denoted by SR n (G), has the vertex set as in G and n(2 ≤ n ≤ p) vertices are mutually adjacent in SR n (G) if and only if they are n-radial in G. While G is disconnected, any n vertices are mutually adjacent in SR n (G) if not all of them are in the same component. When n = 2, SR n (G) coincides with the radial graph R(G). For a pair of graphs G and H on p vertices, the least positive integer n such that SR n (G) ≅ H, is called the Steiner completion number of G over H. When H = K p , the Steiner completion number of G over H is called the Steiner radial number of G. In this paper, we determine 3-radial graph of some classes of graphs, Steiner radial number for some standard graphs and the Steiner radial number for any tree. For any pair of positive integers n and p with 2 ≤ n ≤ p, we prove the existence of a graph on p vertices whose Steiner radial number is n.

## References

1. 1.
2. 2.
Chartrand, G., Oellermann, O.R., Tian, S., Zou, H.B.: Steiner distance in graphs. Casopis Pro Pestovani Matematiky 114(4), 399–410 (1989)
3. 3.
Day, D.P., Oellermann, O.R., Swart, H.C.: Steiner distance-hereditary graphs. SIAM J. Discrete Math. 7, 437–442 (1994)
4. 4.
Kathiresan, K.M., Marimuthu, G.: A study on radial graphs. Ars Combin. 96, 353–360 (2010)
5. 5.
Oellermann, O.R., Tian, S.: Steiner centers in graphs. J. Graph Theory 14(5), 585–597 (1990)
6. 6.
Raines, M., Zhang, P.: The Steiner distance dimension of graphs. Australasian J. Combin. 20, 133–143 (1999)

## Authors and Affiliations

• K. M. Kathiresan
• 1
• S. Arockiaraj
• 2
• R. Gurusamy
• 2
• K. Amutha
• 3
1. 1.Center for Research and Post Graduate Studies in MathematicsAyya Nadar Janaki Ammal CollegeSivakasiIndia
2. 2.Department of Mathematics, Mepco Schlenk Engineering CollegeMepco Engineering CollegeSivakasiIndia
3. 3.Department of MathematicsSri Parasakthi CollegeCourtallamIndia