Advertisement

GRP_CH Heuristic for Generating Random Simple Polygon

  • Sanjib Sadhu
  • Subhashis Hazarika
  • Kapil Kumar Jain
  • Saurav Basu
  • Tanmay De
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)

Abstract

A heuristic ‘GRP_CH’ has been proposed to generate a random simple polygon from a given set of ‘n’ points in 2-Dimensional plane. The “2-Opt Move” heuristic with time complexity \(\mathcal{O}(n^4)\) is the best known (referred in [1]) among the existing heuristics to generate a simple polygon. The proposed heuristics, ‘GRP_CH’ first computes the convex hull of the point set and then generates a random simple polygon from that convex hull. The ‘GRP_CH’ heuristic takes \(\mathcal{O}(n^3)\) time which is less than that of “2-opt Move” heuristic. We have compared our results with “2-Opt Move” and it shows that the randomness behaviour of ‘GRP_CH’ heuristic is better than that of “2-Opt Move” heuristic.

Keywords

Simple polygon Convex Hull Visibility of a line segment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, T., Held, M.: Heuristics for the Generation of Random Polygons. In: Proc. 8th Canadian Conference Computational Geometry, Ottawa, Canada, pp. 38–44. Carleton University Press (1996)Google Scholar
  2. 2.
    O’Rouke, J., Virmani, M.: Generating Random Polygons. Technical Report 011, CS Dept., Smith College, Northampton, MA 01063 (1991)Google Scholar
  3. 3.
    Epstein, P., Sack, J.: Generating triangulation at random. ACM Transaction on Modeling and Computer Simulation 4(3), 267–278 (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Leeuwen, J.V., Schoone, A.A.: Untangling a travelling salesman tour in the plane. In: Muhlbacher, J.R. (ed.) Proc.: 7th Conference Graph-theoretic Concepts in Computer Science (WG 1981), pp. 87–98 (1982)Google Scholar
  5. 5.
    Zhu, C., Sundaram, G., Snoeyink, J., Mitchel, J.S.B.: Generating random polygons with given vertices. Comput. Geom. Theory and Application 6(5), 277–290 (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Ghosh, S.K.: Visibility Algorithm in the plane. Cambridge University Press (2007)Google Scholar
  7. 7.
    Kreveld, M.V., Berg, M.D., Schwartskopf, O., Overmars, M.: Computational Geometry, Algorithm and Application. Springer (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sanjib Sadhu
    • 1
  • Subhashis Hazarika
    • 1
  • Kapil Kumar Jain
    • 1
  • Saurav Basu
    • 1
  • Tanmay De
    • 1
  1. 1.Department of Computer Science and EngineeringNational Institute of TechnologyDurgapurIndia

Personalised recommendations