Range Extremum Queries

  • Rajeev Raman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)


There has been a renewal of interest in data structures for range extremum queries. In such problems, the input comprises N points, which are either elements of a d-dimensional matrix, that is, their coordinates are specified by the 1D submatrices they lie in (row and column indices for d = 2), or they are points in ℝ d . Furthermore, associated with each point is a priority that is independent of the point’s coordinate. The objective is to pre-process the given points and priorities to answer the range maximum query (RMQ): given a d-dimensional rectangle, report the points with maximum priority. The objective is to minimze the space used by the data structure and the time taken to answer the above query. This talk surveys a number of recent developments in this area, focussing on the cases d = 1 and d = 2.


Query Time Indexing Model Maximum Priority Encode Model Orthogonal Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Fischer, J., Lewenstein, M.: Two-Dimensional Range Minimum Queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multidimensional arrays. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 150–160. SIAM (2010)Google Scholar
  3. 3.
    Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary relations and multi-labeled trees. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 680–689. SIAM (2007)Google Scholar
  4. 4.
    Bender, M.A., Cole, R., Raman, R.: Exponential Structures for Efficient Cache-Oblivious Algorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bentley, J.L.: Decomposable searching problems. Information Processing Letters 8(5), 244–251 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric indexes supporting point location queries. In: Mathieu, C. (ed.) SODA, pp. 635–644. SIAM (2009)Google Scholar
  7. 7.
    Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Rao, S.S.: Two Dimensional Range Minimum Queries and Fibonacci Lattices. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brodal, G.S., Jørgensen, A.G.: Data Structures for Range Median Queries. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 822–831. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the ram, revisited. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG 2011, pp. 1–10. ACM, New York (2011), Google Scholar
  11. 11.
    Chan, T.M., Patrascu, M.: Transdichotomous results in computational geometry, I: Point location in sublogarithmic time. SIAM J. Comput. 39(2), 703–729 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays. In: Proc. 5th Annual Symposium on Computational Geometry, pp. 131–139. ACM (1989)Google Scholar
  13. 13.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988); prel. vers. FOCS 1985MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Davoodi, P., Raman, R., Rao, S.S.: Succinct Representations of Binary Trees for Range Minimum Queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian Trees and Range Minimum Queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Foschini, L., Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression: Experiments with compressing suffix arrays and applications. ACM Trans. Algorithms 2(4), 611–639 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM (1984)Google Scholar
  19. 19.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM (1984)Google Scholar
  20. 20.
    Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range Maximum Queries. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Kaplan, H., Ramos, E., Sharir, M.: Range minima queries with respect to a random permutation, and approximate range counting. Discrete & Computational Geometry 45(1), 3–33 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Karpinski, M., Nekrich, Y.: Space Efficient Multi-dimensional Range Reporting. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 215–224. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Mehta, D.P., Sahni, S. (eds.): Handbook of Data Structures and Applications. Chapman & Hall/CRC (2009)Google Scholar
  25. 25.
    Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput. Geom. 42(4), 342–351 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Patrascu, M. (data) structures. In: FOCS, pp. 434–443. IEEE Computer Society Press (2008)Google Scholar
  27. 27.
    Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Kleinberg, J.M. (ed.) STOC, pp. 232–240. ACM (2006)Google Scholar
  28. 28.
    Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23(4), 229–239 (1980)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rajeev Raman
    • 1
  1. 1.University of LeicesterUK

Personalised recommendations