Advertisement

Computing a Longest Common Palindromic Subsequence

  • Shihabur Rahman Chowdhury
  • Md. Mahbubul Hasan
  • Sumaiya Iqbal
  • M. Sohel Rahman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)

Abstract

The longest common subsequence (LCS) problem is a classic and well-studied problem in computer science. Palindrome is a string, which reads the same forward as it does backward. The longest common palindromic subsequence (LCPS) problem is an interesting variant of the classic LCS problem which finds the longest common subsequence between two given strings such that the computed subsequence is also a palindrome. In this paper, we study the LCPS problem and give efficient algorithms to solve this problem. To the best of our knowledge, this is the first attempt to study and solve this interesting problem.

Keywords

Longest common subsequence Palindromes Dynamic programming Range query 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley, J.L., Friedman, J.H.: Data structures for range searching. ACM Comput. Surv. 11, 397–409 (1979)CrossRefGoogle Scholar
  2. 2.
    Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in parallel. Algorithmica 14, 355–366 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, New YorkGoogle Scholar
  4. 4.
    Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palindromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Iliopoulos, C., Rahman, M.: A new efficient algorithm for computing the longest common subsequence. Theory of Computing Systems 45, 355–371 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science, 5365–5373 (November 2009)Google Scholar
  7. 7.
    Manacher, G.: A new linear-time on-line algorithm for finding the smallest initial palindrome of a string. Journal of the ACM 22, 346–351 (1975)zbMATHCrossRefGoogle Scholar
  8. 8.
    Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theoretical Computer Science 410, 900–913 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Tomohiro, I., Inenaga, S., Takeda, M.: Palindrome Pattern Matching. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 232–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shihabur Rahman Chowdhury
    • 1
  • Md. Mahbubul Hasan
    • 1
  • Sumaiya Iqbal
    • 1
  • M. Sohel Rahman
    • 1
  1. 1.AℓEDA Group, Department of CSEBUETDhakaBangladesh

Personalised recommendations