Advertisement

Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages

  • R. Arulprakasam
  • V. R. Dare
  • S. Gnanasekaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)

Abstract

In this paper, the concept of fuzzy local ω-language, B\(\ddot{u}\)chi fuzzy local ω-language are studied and we give some closure properties of fuzzy local ω-languages. We also establish relationship between deterministic fuzzy local automaton and fuzzy local ω-language. Further we show that every fuzzy regular ω-language is a projection of a B\(\ddot{u}\)chi fuzzy local ω-language.

Keywords

Local automaton Local ω-language Fuzzy set Deterministic fuzzy automaton Fuzzy regular ω-language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béal, M.P.: Codes circulaires, automates locaux et entropie. Theoretical Compute Science 57, 283–302 (1988)CrossRefGoogle Scholar
  2. 2.
    Berstel, J., Pin, J.-E.: Local languages and the Berry - Sethi algorithm. Theoretical Computer Science 155, 439–446 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Caron, P.: Families of locally testable languages. Theoretical Computer Science 242, 361–376 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gnanasekaran, S.: Fuzzy local languages. International Mathematical Forum 5(44), 2149–2155 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Malik, D.S., Mordeson, J.N.: On Fuzzy regular languages. Information Sciences 88, 263–273 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Mordeson, J.N., Malik, D.S.: Fuzzy automata and languages. Chapman and Hall, CRC (2002)Google Scholar
  7. 7.
    Perrin, D., Pin, J.-E.: Infinite Words, Automata, Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar
  8. 8.
    Wee, W.G., Fu, K.S.: A Formation of Fuzzy Automata and its application as a model of learning system. IEEE Transactions on in Systems Science and Cybernetics 5(3), 215–223 (1969)zbMATHCrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Arulprakasam
    • 1
  • V. R. Dare
    • 2
  • S. Gnanasekaran
    • 3
  1. 1.Department of MathematicsCK College of Engineering and TechnologyCuddaloreIndia
  2. 2.Department of MathematicsMadras Christian CollegeChennaiIndia
  3. 3.Department of MathematicsPeriyar Arts CollegeCuddaloreIndia

Personalised recommendations